Question 1.
Let \(f : X \rightarrow Y \) be a function.
Take \(A \subseteq X \) and \(B \subseteq Y \).

(i)
Given \(x \in A \), \(f(x) \in f(A) \), by the definition of \(f(A) \).
Hence, \(x \in f^{-1}(f(A)) \), by the definition of \(f^{-1}(f(A)) \).
Thus, \(A \subseteq f^{-1}(f(A)) \).

Given \(y \in f(f^{-1}(B)) \), \(y = f(x) \) for some \(x \in f^{-1}(B) \), by the definition of \(f(f^{-1}(B)) \).
Hence, \(y = f(x) \in B \), by the definition of \(f(f^{-1}(B)) \).
Thus, \(f(f^{-1}(B)) \subseteq B \).

(ii)
For \(X = Y := \mathbb{R}, A = B = [-1,1] \) and the function
\(f : X \rightarrow Y, \quad x \mapsto 0 \)
\[
A = [-1,1] \\
\neq \mathbb{R} \\
= f^{-1}([0]) \\
= f^{-1}(f(A)) \\
f(f^{-1}(B)) = \{0\} \\
\neq [-1,1] \\
= B.
\]

(iii)
Let \(f \) be injective.
Since, by (i), \(A \subseteq f^{-1}(f(A)) \), it is enough to show that \(f^{-1}(f(A)) \subseteq A \).
If \(x \in f^{-1}(f(A)) \), then \(f(x) \in f(A) \) by the definition of \(f^{-1}(f(A)) \).
Hence, by the definition of \(f(A) \), \(f(x) = f(a) \) for some \(a \in A \).
Since \(f \) is injective, \(x = a \), whence \(x \in A \).
Thus \(f^{-1}(f(A)) \subseteq A \).

For the converse, suppose that for all \(A \subseteq X \), \(f^{-1}(f(A)) = A \).
Take \(x, x' \in X \) with \(f(x') = f(x) \).
Putting \(A := \{x\} \)
\[
x' \in f^{-1}(f(\{x\})) \\
= \{x\}
\]
Thus, \(x' = x \), showing that \(f \) is injective.
(iv) Let f be surjective.

Take $y \in B$.

Since f is surjective, there is an $x \in X$ with $f(x) = y$.

Then, by definition, $x \in f^{-1}(B)$.

Thus, $y = f(x) \in f(f^{-1}(B))$.

Together with (i), this shows that $f(f^{-1}(B)) = B$.

Conversely, suppose that for every $B \subseteq Y$, we have $f(f^{-1}(B)) = B$.

Then $\text{im}(f) = f(X) = f(f^{-1}(Y)) = Y$, whence f is surjective.

(v) Let $g : Y \rightarrow X$ be the inverse of f.

Then $y = f(x)$ if and only if $g(y) = x$ and so

$$f^{-1}(B) = \{x \mid f(x) \in B\} = \{g(y) \mid y \in B\}$$

as $x = g(y)$ if and only if $f(x) = y$.

Question 2.
Let $f : X \rightarrow Y$ be a function and take $A, B \subseteq X$, $C, D \subseteq Y$.

(i) $f(A \cup B) = f(A) \cup f(B)$, for

$$y \in f(A \cup B) \text{ if and only if } y = f(x), \text{ with } x \in A \cup B$$

if and only if $y = f(x)$, with $x \in A$ or $x \in B$.

if and only if $y \in f(A)$ or $y \in f(B)$.

if and only if $y \in f(A) \cup f(B)$.

(ii) $f(A \cap B) \subseteq f(A) \cap f(B)$, for

$$y \in f(A \cap B) \text{ if and only if } y = f(x) \text{ where } x \in A \cap B$$

if and only if $y = f(x)$ where $x \in A$ and $x \in B$.

if and only if $y \in f(A)$ and $y \in f(B)$.

if and only if $y \in f(A) \cap f(B)$.

To see that equality need not hold, take

$$X := Y := \mathbb{R}, \quad A := \mathbb{R}^{-} = \{x \in \mathbb{R} \mid x < 0\}, \quad B := \mathbb{R}^{+} = \{x \in \mathbb{R} \mid x > 0\}$$

and

$$f : X \rightarrow Y, \quad x \mapsto 0.$$

Then $f(A \cap B) = \emptyset$ as $A \cap B = \emptyset$, but $f(A) \cap f(B) = \{0\} \neq \emptyset$.

(iii) $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$, for

$$x \in f^{-1}(G \cup H) \text{ if and only if } f(x) \in G \cup H$$

if and only if $f(x) \in G$ or $f(x) \in H$.

if and only if $x \in f^{-1}(G)$ or $x \in f^{-1}(H)$.

if and only if $x \in f^{-1}(G) \cup f^{-1}(H)$.

2
We can illustrate the difference diagrammatically as well.

Then to see that equality need not hold, take

\[f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{R} \setminus \{0\} \\ 0 & \text{otherwise} \end{cases} \]

In other words,

\[f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H) \]

for

\[x \in f^{-1}(G \cap H) \quad \text{if and only if} \quad f(x) \in G \cap H \]

\[\text{if and only if} \quad f(x) \in G \quad \text{and} \quad f(x) \in H \]

\[\text{if and only if} \quad x \in f^{-1}(G) \quad \text{and} \quad x \in f^{-1}(H) \]

\[\text{if and only if} \quad x \in f^{-1}(G) \cap f^{-1}(H). \]

The following examples show there is no fixed relationship between \(f(X \setminus A) \) and \(Y \setminus f(A) \).

(a) For \(X = Y \), \(f := \text{id}_X \) and any \(A \subseteq X \),

\[f(X \setminus A) = Y \setminus f(A) \]

(b) For \(X := \mathbb{R}, A := [0, 1], Y := [-1, 1] \) and \(f(x) := \sin(2\pi x) \),

\[f(X \setminus A) = Y \]

\[Y \setminus f(A) = \emptyset \]

(c) For \(X = Y = A = \mathbb{R} \) and \(f(x) = 0 \) for all \(x \in X \).

\[f(X \setminus A) = \emptyset \quad \text{as} \quad X \setminus A = \emptyset \]

\[Y \setminus f(A) \neq \emptyset \]

(vi) \(f^{-1}(Y \setminus G) = X \setminus f^{-1}(G) \), for

\[x \in f^{-1}(Y \setminus G) \quad \text{if and only if} \quad f(x) \in Y \setminus G \]

\[f(x) \notin G \]

\[\text{if and only if} \quad x \notin f^{-1}(G) \]

\[\text{if and only if} \quad x \in X \setminus f^{-1}(G). \]

Question 3.

Take sets \(A, B, C \) and \(D \).

(i) \((A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D) \), for

\[(x, y) \in (A \cup C) \times (B \cup D) \quad \text{if and only if} \quad x \in (A \cup C) \quad \text{and} \quad y \in (B \cup D) \]

\[(x \in A \quad \text{or} \quad x \in C) \quad \text{and} \quad (y \in B \quad \text{or} \quad y \in D) \]

\[(x \in A \quad \text{and} \quad y \in B) \quad \text{or} \quad (x \in C \quad \text{and} \quad y \in B) \]

\[\text{or} \quad (x \in A \quad \text{and} \quad y \in D) \quad \text{or} \quad (x \in C \quad \text{and} \quad y \in D) \]

\[(x, y) \in A \times B \quad \text{or} \quad (x, y) \in C \times B \quad \text{or} \quad (x, y) \in A \times D \]

\[\text{or} \quad (x, y) \in C \times D \]

In other words,

\[(A \cup C) \times (B \cup D) = (A \times B) \cup (C \times B) \cup (A \times D) \cup (C \times D) \]

To see that equality need not hold, take \(a \neq c \) and \(b \neq d \) and consider

\[A := \{a\}, \quad B := \{b\}, \quad C := \{c\}, \quad D = \{d\}, \]

Then

\[(A \times B) \cup (C \times D) = \{(a, b), (c, d)\}, \]

whereas

\[(A \cup C) \times (B \cup D) = \{(a, b), (a, d), (c, b), (c, d)\}. \]

We can illustrate the difference diagrammatically as well.
Let A and C be disjoint (finite) intervals in \mathbb{R}.
Let B and D also be disjoint (finite) intervals in \mathbb{R}.
Then $(A \times B) \cup (C \times D)$ and $(A \cup C) \times (B \cup D)$ are the subsets of \mathbb{R}^2 illustrated in the following diagrams.

(ii) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$. For

$(x, y) \in (A \times B) \cap (C \times D)$ if and only if $x \in A$ and $y \in B$, and $x \in C$ and $y \in D$
if and only if $x \in A$ and $x \in B$, and $y \in C$ and $y \in D$
if and only if $x \in A \cap B$ and $y \in C \cap D$.

Question 4.
Take $A := \mathbb{R}^*: = \mathbb{R} \setminus \{0\}$.

(a) The function

$$f: A \to \mathbb{R}, \quad x \mapsto \frac{x}{|x|} = \begin{cases} -1 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}$$

clearly satisfies

$$\frac{df}{dx} = 0$$

everywhere on A, but is not constant, since $f(-1) \neq f(1)$.
(b) The function
\[f: A \rightarrow \mathbb{R}, \quad x \mapsto -\frac{1}{x} \]
clearly satisfies
\[\frac{df}{dx} = \frac{1}{x^2} > 0 \]
everywhere on A, but is not monotonically increasing, since \(f(-1) = 1 > -1 = f(1) \).

(c) For the function
\[f: A \rightarrow \mathbb{R}, \quad x \mapsto x - \frac{1}{x} \]
\[\frac{df}{dx} = 1 + \frac{1}{x^2} > 0 \]
for all \(x \in A \).
But \(f \) is not injective (1–1), since \(f(-1) = f(1) = 0 \).

Question 5.

Let \(\sim \) be an equivalence relation on the set \(X \)

Let \([x] \) denote the equivalence class of \(x \in X \), so that
\[[x] := \{ t \in X \mid x \sim t \}. \]

(a) Take \(x, x' \in X \) with \(x \sim x' \).

If \(z \in [x] \), then, by the definition of \([x]\), \(z \sim x \).

Since \(\sim \) is transitive, \(z \sim x' \).

Hence, by the definition of \([x']\), \(z \in [x'] \).

Thus, \([x]\) \subseteq \([x']\)\).

Since \(\sim \) is symmetric, we may interchange \(x \) and \(x' \), and, arguing as above, obtain \([x']\) \subseteq \([x]\)\).

Hence, combining the two inclusions, we deduce that \([x] = [x']\).

If \(z \in [x] \cap [x'] \), then, by definition, \(z \sim x \) and \(z \sim x' \).

By the symmetry and transitivity of \(\sim \), \(x \sim x' \), in which case, by the above, \([x] = [x']\).

It follows that \([x] \cap [x'] = \emptyset \) whenever \(x \not\sim x' \)

(b) Since \(\sim \) is reflexive, \(x \in [x] \) for every \(x \in X \). Thus
\[
X = \bigcup_{x \in X} \{x\} \\
\subseteq \bigcup_{x \in X} [x] \\
\subseteq \bigcup_{x \in X} X \\
= X.
\]

(c) Take the natural surjection
\[\eta: X \rightarrow X/\sim, \quad x \mapsto [x] \]

Take a function \(f: X \rightarrow Y \) with \(f(x) = f(x') \) whenever \(x \sim x' \).
In order for a function
\[\tilde{f}: X/\sim \rightarrow Y, \quad [x] \mapsto f(x) \]
to satisfy
\[f = \tilde{f} \circ \eta \quad \text{(\ast)} \]
we must have, for \([x] \in X/\sim\),
\[
\tilde{f}([x]) = \tilde{f}(\eta(x)) \\
= (\tilde{f} \circ \eta)(x) \\
= f(x)
\]
by the definition of \(\eta\)
in order to satisfy (\ast)

Hence, the only possible function \(\tilde{f}\) is
\[\tilde{f}: X/\sim \rightarrow Y, \quad [x] \mapsto f(x) \]
It (only) remains to verify that \(\tilde{f}\) is, in fact, a function.
Both the domain and co-domain are sets.
It is immediate from the definition of \(\tilde{f}\) that it assigns to each \([x] \in X/\sim\) an element of \(Y\).
Thus, the only way \(\tilde{f}\) could fail to be a function is that it assigns to some element of \(X/\sim\) more than one element of \(Y\).
For this to happen, we would have to have \([x] = [x']\) with \(\tilde{f}([x]) \neq \tilde{f}([x'])\).
But \([x] = [x']\) if and only if \(x \sim x'\), in which case, by hypothesis, \(f(x) = f(x')\).
Thus \(\tilde{f}\) is a function.

Comment. The requirement that \(\tilde{f} \circ \eta = f\) forced the definition of \(\tilde{f}\), ensuring that there cannot be more than one function satisfying the requirement.
This illustrates one of the ways in which a theoretical approach can simplify solving a problem, for we see that there is only one possibility, for which the theoretical considerations give a concrete formula.
All that remained was to check whether this sole possibility is actually a function.
In turn, this was the case if and only if \(f(x) = f(x')\) whenever \(x \sim x'\), which is the one and only condition imposed on \(f\).