Polynomials and Polynomial Functions

In order to keep the discussion close to the familiar, we restrict attention to \(\mathbb{R} \), the field of real numbers. The general results, but not the specific examples, hold for all fields.

Polynomials

Definition 1. A polynomial in the indeterminate \(t \) with real coefficients is an expression of the form

\[
c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n
\]

where \(n \) is a natural number, each \(c_j \) is a real number, and \(c_n \neq 0 \), unless \(n = 0 \).

The \(c_j \)s are the coefficients of the polynomial.

When \(c_n \neq 0 \), the polynomial is said to have degree \(n \).

The polynomials \(c_0 + c_1 t + \cdots + c_n t^n \) and \(b_0 + b_1 t + \cdots + b_m t^m \) are equal if and only if \(m = n \) and \(b_j = c_j \) for every \(j \).

The set of all polynomials in the indeterminate \(t \) with real coefficients is

\[
\mathbb{R}[t] = \{c_0 + c_1 t + \cdots + c_n t^n \mid n \in \mathbb{N}, c_j \in \mathbb{R} \text{ for } 0 \leq j \leq n \text{ and } c_n \neq 0 \text{ if } n \neq 0\}
\]

Example 2.

\[
t^2 + 2t + 3
\]

is the polynomial \(c_0 + c_1 t + \cdots + c_n t^n \) with \(n = 2 \), \(c_0 = 3 \), \(c_1 = 2 \) and \(c_2 = 1 \).

Convention 3. It is common to write \(c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n \) as

\[
\sum_{j=0}^{n} c_j t^j
\]

treating \(c_0 \) as \(c_0 t^0 \). This useful convention needs to be treated with care until the reader is comfortable with it.

Remark 4. It is essential to note that in the polynomial

\[
c_0 + c + 1t + \cdots + c_n t^n
\]

\(t \) is not a real number and that the + does not represent addition of real numbers.

When \(n = 0 \), a polynomial comprises the single coefficient \(c_0 \), which is just a real number. Such a polynomial is sometimes referred to as a constant polynomial.

Since there is precisely one constant polynomial for each real number, we can think of the real numbers as just special polynomials — the constant polynomials.
This makes the set of all polynomials with real coefficients an extension of the set of real numbers: think of \(\mathbb{R}[t] \) as an extension of \(\mathbb{R} \) obtained by adjoining \(t \). This point of view is central to number theory and algebra.

We can define several operations on polynomials: “addition” and “multiplication of polynomials” as well as the “multiplication of a polynomial by a real number”. The reader is certainly familiar with these. While these are important and extremely useful, we do not discuss them now as they distract from our main topic.

Polynomial Functions

Definition 5. Given \(X \subseteq \mathbb{R} \), the function

\[
f : X \rightarrow \mathbb{R}, \quad x \mapsto f(x)
\]

is a polynomial function if and only if there is a polynomial \(c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n \in \mathbb{R}[t] \) such that for all \(x \in X \)

\[
f(x) = c_0 + c_1 x + c_2 t^2 + \cdots + c_n x^n
\]

Remark 6. In the expression \(c_0 + c_1 x + c_2 t^2 + \cdots + c_n x^n \), the \(x \) is a real number and the + does denote addition of real numbers.

Example 7. The function

\[
f : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto x^2 + 2x + 3
\]

is, plainly, a polynomial function.

Example 8.

\[
f : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \cos^2 x + \sin^2 x
\]

is a polynomial function, even though

\[
\cos^2 t + \sin^2 t
\]

is not a polynomial in the indeterminate \(t \) with real coefficients.

This a consequence of Pythagoras’ Theorem, since for every real number \(x \)

\[
\cos^2 x + \sin^2 x = 1
\]

Hence the functions

\[
f : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \cos^2 x + \sin^2 x
\]

\[
g : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto 1
\]

are one and the same function, even thought they are defined using radically different expressions. Of course, the second expression plainly use the polynomial of degree 0, \(c_0 \) where \(c_0 = 1 \).
Example 8 illustrates the difference between a polynomial and a polynomial function: a function can be a polynomial function even if it is not defined using a polynomial.

Example 8 also illustrates that it can require a major mathematical achievement to recognise that a given function is, in fact, a polynomial function.

It can happen in applications that a function is defined through a more or less complex procedure, which masks its “true” nature.

Example 9. Consider the function

$$g : \mathbb{R}^+ \to \mathbb{R}, \quad x \mapsto \int_{4}^{x} \frac{du}{u}$$

and define

$$f : \mathbb{R}^+ \to \mathbb{R}, \quad x \mapsto \frac{1}{g'(x)}$$

where $g'(x)$ is the derivative of g at x.

While it is not immediate that this f is also a polynomial function, follows from the Fundamental Theorem of Calculus that g is a differentiable function, with

$$g'(x) = \frac{1}{x}$$

for every $x \in \mathbb{R}^+$. Since \mathbb{R} is a field, $f(x) = x$ for every $x \in \mathbb{R}^+$, showing that our function f is a polynomial function.