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Lecture 1 Introduction

In one-variable calculus you have studied functions of one real variable, in particular

the concepts of continuity, differentiation and integration. Functions of one variable

can capture the dependence of some quantity by only one other quantity. In practice

however, one often needs to investigate the dependence on one or more quantities

on many variables, such as time, location, temperature, air pressure, or costs of

different products etc. Therefore it in natural to consider functions that depend on

many variables. We will write f(x, y) for a function of two variables, f(x, y, z) for

a function of three variables or, more generally, f(x1, x2, . . . , xn) for a function of

n variables. Instead of f other letters can be used (such as g, h, F,G,H or f1, f2

etc.). Here it is assumed that a domain is specified to which the argument variables

belong. We will write R2 for the set of all pairs (x, y) of real numbers, R3 for all

triples of real numbers and Rn for all n-tuples of real numbers. The domains of

multivariable functions are subsets of those.

It is convenient to plot functions of one variable as a graph in the two-dimensional

plane (and, vice versa, one can study curves in the plane using functions). Similar

to this, a function of two variables can be plotted as a surface in three-dimensional

space, and two-dimensional curved surfaces can be studied by functions of two vari-

ables. Visualising functions of more than two variables is more difficult.

In this unit we will cover the concepts of continuity, differentiation and integra-

tion of functions of many variables, as well as applying these concepts to study the

geometry of curves and surfaces.

1.1 Rectangular Coordinate Systems

First we will recall some concepts from linear algebra that were introduced in

Math101. Recall that a point P0 in 2-space can be described by a pair of num-

bers, namely its Cartesian coordinates (x0, y0)
1. We use a coordinate system of two

perpendicular axes, the x-axis and y-axis. Now, x0 is the number on the x-axis

that corresponds to the perpendicular projection of P0 to the x-axis (parallel to the

y-axis) and y0 is the number on the y-axis that corresponds to the perpendicular

projection of P0 to the y-axis (parallel to the x-axis).

1Here we use the lower indices 0 to indicate that these are the coordinates of the point P0.
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In 3-space, the situation is similar. Here we need an extra axis, the z-axis.

Usually we make the z-axis vertical and pointing upward, while we make the x-axis

and y-axis to form a horizontal xy-plane as follows
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To find the coordinates a point P0 we need to project it perpendicularly to the

corresponding axis (parallel to the plane spanned by the remaining axes). This can

be done in two steps, we first find the point P ′
0 that is the perpendicular projection

of P to the xy-plane. Then x0, y0 are the coordinates of P ′
0 in the xy-plane and

z0 is the distance between P0 and P ′
0 with a positive sign if P is located above the

xy-plane and with a negative sign in the opposite case.

To find a point with given coordinates (x0, y0, z0) first find P ′
0 with coordinates

(x0, y0) in the xy-plane and the go up by the distance of |z0| = z0 if z0 ≥ 0 or down

by |z0| = −z0 if z0 < 0 to find P0. We will use the notation P0(x0, y0, z0) to indicate

that the point P0 has coordinates (x0, y0, z0).

Note: The coordinate system as drawn above is called a right-handed system

(when the fingers of the right hand are cupped so that they curve from the positive

x-axis toward the positive y-axis, the thumb points (roughly) in the direction of the

positive z-axis). If we interchange the positions of the x-axis and y-axis, then we

obtain a left-handed system. It can be shown that rectangular coordinate systems in

3-space fall into just these two categories: right-handed and left-handed. In this unit,

we will always use right-handed systems, and we will always draw the coordinates

with the z-axis vertical and pointing upward. We will call this the xyz-coordinate

system.

Example 1 Find the point with coordinates (1, 2,−1) in the xyz-coordinate system.
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Solution: We first draw the coordinate axes to obtain the xyz-coordinate system.

Then find (1, 2) on the xy-plane, draw a vertical line through the point, and move

down one unit (since z0 = −1), and we arrive at (1, 2,−1). 2

(1,2,-1)
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1.2 Vectors

Shifts in the plane or space can be described by saying to what point P2 a given

point P1 has been shifted. The line ℓ connecting P1 and P2 gives the direction of the

shift. Any other point Q1 would be shifted along a line parallel to ℓ by a distance

equal to the distance between P1 and P2 to a point Q2, so that P1, P2, Q1, Q2 form

a parallelogram. For this description it did not matter whether we started at P1 or

Q1, so instead of the pairs P1(x1, y1, z1)P2(x2, y2, z2) or Q1(X1, Y1, Z1)Q2(X2, Y2, Z2)

we may consider the object

~v = 〈x2 − x1, y2 − y1, z2 − z1〉 = 〈X2 −X1, Y2 − Y1, Z2 − Z1〉

called vector (in 3-space)2. To indicate that a vector ~v is represented by an initial

point P1 and terminal point P2 we write ~v =
−−→
P1P2.

When the initial and terminal point are the same, no shift occurs and the corre-

sponding vector is the zero vector

~0 = 〈0, 0, 0〉.
2The same concept works in the 2-dimensional plane and any n-dimensional space. To keep

things simple, but not too simple, we restrict here to 3-dimensional space.
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Points and vectors are described by in a similar way by coordinates. In fact, a

point P (x, y, z) can be identified with a vector ~v = 〈x, y, z〉 that shifts the origin

O(0, 0, 0) to P (x, y, z). Nevertheless, points and vectors are different objects. We

cannot add points or multiply points with numbers, but we can add vectors:

~v1 + ~v2 = 〈x1, y1, z1〉 + 〈x2, y2, z2〉 = 〈x1 + x2, y1 + y2, z1 + z2〉.

The geometric meaning of adding two vectors is to perform two shifts, first by ~v1

and then by ~v2. The result is a single shift by ~v1 + ~v2. Notice that the sum of two

vectors does not depend on the order of the two shifts being performed.

We can also multiply a vector ~v = 〈x, y, z〉 by a number α (in this context called

a scalar as opposed to a vector):

α~v = α〈x, y, z〉 = 〈αx, αy, αz〉.

Geometrically, the shift α~v is in the same direction as ~v, if α > 0 and in the opposite

direction, if α < 0, by |α| times the original distance.

It follows easily from the arithmetic of numbers that the following properties are

satisfied:

(a) ~u+ ~v = ~v + ~u

(b) (~u+ ~v) + ~w = ~u+ (~v + ~w)

(c) ~u+~0 = ~0 + ~u = ~u

(d) ~u+ (−~u) = ~0

(e) k(ℓ~u) = (kℓ)~u

(f) k(~u+ ~v) = k~u+ k~u

(g) (k + ℓ)~u = k~u+ ℓ~u

(h) 1~u = ~u.

In our computations with vectors we will rely on these properties. One can define

a more abstract notion of vector spaces by stipulating theses properties as axioms.

This will be discussed in more detail in Linear Algebra Pmth213. You may verify

that the set of polynomials, or the set of polynomials of degree less or equal to 4

also constitute an abstract linear space.
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Lecture 2 Length, Dot Product, Cross Product

2.1 Length

We know that in 2-space, the distance between P1(x1, y1) and P2(x2, y2) is

d =
√

(x2 − x1)2 + (y2 − y1)2.

This is at the same time the length of the vector ~v =
−−→
P1P2, denoted by ||~v||.

In 3-space, there is a similar formula: the distance between P1(x1, y1, z1) and

P2(x2, y2, z2) is

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

which again is the length ||~v|| of the vector ~v =
−−→
P1P2.

Can you prove these formulas using elementary geometry and the following dia-

grams? (Hint: Pythagoras theorem).
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Thus, the length of a vector ~v = 〈v1, v2, v3〉 (or ~v = 〈v1, v2, v3, . . . vn〉), also called

the norm of ~v, is given by

||~v|| =
√

v2
1 + v2

2 + v2
3

(

or ||~v|| =
√

v2
1 + v2

2 + v2
3 + · · · + v2

n

)

.

The zero vector ~0 has length 0.

A vector of length 1 is called a unit vector. For example, if ~v 6= ~0, then 1
||~v||~v

is a unit vector (why? Please check). The following unit vectors are of special

importance:
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~i = 〈1, 0〉, ~j = 〈0, 1〉 in 2-space,

~i = 〈1, 0, 0〉, ~j = 〈0, 1, 0〉, ~k = 〈0, 0, 1〉 in 3-space.

This is because for any vector ~v = 〈v1, v2〉, we have

~v = 〈v1, v2〉 = 〈v1, 0〉 + 〈0, v2〉
= v1〈1, 0〉+ v2〈0, 1〉
= v1

~i+ v2
~j;

and for any vector ~v = 〈v1, v2, v3〉, we have

~v = 〈v1, v2, v3〉 = v1
~i+ v2

~j + v3
~k.

These vectors are sometimes called the unit coordinate vectors.

2.2 Dot Product

The dot product assigns a scalar (number) to two vectors. It can be defined in

any dimension.

Let ~u = 〈u1, u2〉, ~v = 〈u1, v2〉. Then the dot product of ~u and ~v is given by

~u · ~v = u1v1 + u2v2.

Similarly, for ~u = 〈u1, u2, u3〉, ~v = 〈v1, v2, v3〉,

~u · ~v = u1v1 + u2v2 + u3v3,

or, generally, for ~u = 〈u1, u2, . . . , un〉, ~v = 〈v1, v2, . . . , vn〉,

~u · ~v = u1v1 + u2v2 + · · ·+ unvn.

Notice that the length of a vector ~v can be expressed as

||~v|| =
√
~v · ~v.

The relation between the dot product and the Euclidean geometric notion of

angle is the subject of the Theorem below.
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Theorem 1 Let ~u,~v be nonzero vectors in 2-space or 3-space3, and let θ be the

angle between ~u and ~v. Then

~u · ~v = ||~u||||~v|| cos θ, i.e. cos θ = ~u·~v
||~u||||~v|| .

Proof: We prove the case that ~u · ~v are 2-space vectors. The 3-space case can be

proved similarly.

As in the diagram, we can use

~u and ~v to form the triangle

OPQ, where ~u = 〈u1, u2〉, ~v = 〈v1, v2〉,
and

−→
OP = ~u,

−→
OQ = ~v. Note that

the length of OP is ||~u||,
that of OQ is ||~v|| and

the length of PQ is ||−→PQ|| = ||~v − ~u||
since

−→
PQ = 〈v1 − u1, v2 − u2〉 = ~v − ~u.

The law of cosines applied to the triangle

OPQ gives

||~v − ~u||2 = ||~u||2 + ||~v||2 − 2||~u||||~v|| cos θ

which is equivalent to

0

x

y

v

u

P

Q

O

||~u||||~v|| cos θ =
1

2

(

||~u||2 + ||~v||2 − ||~v − ~u||2
)

=
1

2

{

u2
1 + u2

2 + v2
1 + v2

2 −
[

(v1 − u1)
2 + (v2 − u2)

2
]}

= u1v1 + u2v2

= ~u · ~v

i.e.

~u · ~v = ||~u||||~v|| cos θ.

2

Theorem 1 shows that dot product can be used to calculate the angle between

two vectors. In particular, two non-zero vectors ~u,~v are perpendicular if and only

if ~u · ~v = 0, i.e. cos θ = 0.

Another consequence of Theorem 1 is the important Cauchy-Schwarz inequal-

ity

|~u · ~v| ≤ ||~u||||~v||
3In higher dimensional spaces the formula cos θ = ~u·~v

||~u||||~v|| can be used to define the notion of

angle.
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with equality occuring only if the two vectors are parallel or one of them is the zero

vector.

Example 1. Let P1 = (1, 1, 1), P2 = (3, 0, 2) and P3 = (2, 2, 3). Find the angle

between
−−→
P1P2 and

−−→
P1P3.

Solution: Let θ denote the angle. Then, by Theorem 1,

cos θ =

−−→
P1P2 ·

−−→
P1P3

||−−→P1P2||||
−−→
P1P3||

We have
−−→
P1P2 = 〈3 − 1, 0 − 1, 2 − 1〉 = 〈2,−1, 1〉
−−→
P1P3 = 〈2 − 1, 2 − 1, 3 − 1〉 = 〈1, 1, 2〉

−−→
P1P2 ·

−−→
P1P3 = 2 × 1 + (−1) × 1 + 1 × 2 = 3

||−−→P1P2|| =
√

22 + (−1)2 + 12 =
√

6

||−−→P1P3|| =
√

12 + 12 + 22 =
√

6

Hence

cos θ =
3√
6
√

6
=

1

2
, θ = 60o (or

π

3
)

2

Dot product has the usual arithmetic properties which we list below, the proof

follows from the definition of dot product directly, and therefore will not be provided.

You are encouraged to prove some of them, at least (d).

If ~u,~v, and ~w are vectors and k is a scalar, then

(a) ~u · ~v = ~v · ~u

(b) ~u · (~v + ~w) = ~u · ~v + ~u · ~w

(c) k(~u · ~v) = (k~u) · ~v = ~u · (k~v)

(d) ~v · ~v = ||~v||2 ≥ 0 (and equality holds only for ~v = ~0).

Property (a) is called symmetry, (b) and (c) together bilinearity and (d) posi-

tivity. In a more abstract setting these properties are used to define dot products

in arbitrary vector spaces. This concept will be developed in Pmth213.
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2.3 Orthogonal Projections

Let ~u and ~b be two vectors in 2-space or 3-space. Then the vector ~w formed as in

the diagram below is called the orthogonal projection of ~u on ~b, and is denoted

by proj~b ~u

w
b

u

If the angle θ between ~u and ~b is less than 90◦, i.e. π
2
, then proj~b ~u is in the

direction of ~b. Therefore proj~b ~u has the form

proj~b ~u = k~b for some scalar k > 0.

Using the definition, we find that the length of proj~b ~u is

||~u|| cos θ = ||~u|| ~u ·~b
||~u|| · ||~b||

(by Theorem 1)

=
~u ·~b
||~b||

.

On the other hand, || proj~b ~u|| = ||k~b|| = k||~b||. Therefore

k||~b|| =
~u ·~b
||~b||

, that is k =
~u ·~b
||~b||2

.

Substituting back, we obtain

Theorem 2 proj~b ~u =
~u ·~b
||~b||2

~b

The above formula is also true if θ is greater than 90◦. Please check this by

modifying the above proof.

Let us now look at some of the uses of this formula.

By definition, the distance between two sets P and Q in 2- or 3-space is the

infimum of all distances of a point P ∈ P and Q ∈ Q, i.e., roughly speaking, the
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distance between the two points in P and Q that are closest to each other in the

respective sets:

dist(P,Q) = inf
P∈P,Q∈Q

||PQ||.

Example 2. Find a formula for the distance D between the point P (x0, y0) and

the line Ax+By + C = 0.

Solution: Let us use the graph at the

right to help with the argument. The dis-

tance from P to an arbitrary point Q on

the line is the hypotenuse of a right trian-

gle with one leg being the distance from

P to the orthogonal projection (say Q′)

and the other being the distance between

Q and Q′. From ||PQ|| ≥ ||PQ′|| we see

that the infimum of distances ||PQ|| is at-

tained for Q = Q′. Therefore we need to

find the orthogonal projection of P on the

line. ax+by+c=0

x

y

Q

P

n

Let Q = (x1, y1) be any point on the line (i.e. Ax1 +By1 +C = 0) and position

~n so that Q is its initial point. Then

D = || proj~n
−→
QP || = ||

−→
QP · ~n
||~n||2 ~n|| (using Theorem 2)

=

∣

∣

∣

∣

∣

−→
QP · ~n
||~n||2

∣

∣

∣

∣

∣

· ||~n|| (using ||k~v|| = |k|||~v||)

=
|−→QP · ~n|
||~n||

But
−→
QP = 〈x0 − x1, y0 − y1〉, ~n = 〈A,B〉. Hence

−→
QP · ~n = A(x0 − x1) +B(y0 − y1)

= Ax0 +By0 − Ax1 − By1

= Ax0 +By0 + C (using Ax1 +By1 + C = 0),

||~n|| =
√
A2 +B2 and

D =
|−→QP · −→n |
||−→n || =

|Ax0 +By0 + C|√
A2 +B2

2

Note: The point Q is introduced just for an intermediate step, it does not appear

in the final formula.
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Notice that the distance of a point P (x, y) to the y axis is just |x| and the distance

to the x-axis is just |y|. This can be verified by the formula with A = 0, B = 1, C = 0

and A = 1, B = 0, C = 0, respectively.

2.4 Cross Product

For vectors in 3-space only, another kind of product, called the cross product, is

defined. If ~u〈u1, u2, u3〉 and ~v = 〈v1, v2, v3〉, then the cross product ~u × ~v is a

vector given by

~u× ~v =

∣

∣

∣

∣

u2 u3

v2 v3

∣

∣

∣

∣

~i−
∣

∣

∣

∣

u1 u3

v1 v3

∣

∣

∣

∣

~j +

∣

∣

∣

∣

u1 u2

u1 v2

∣

∣

∣

∣

~k

=

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k

u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

∣

Note that ~u · ~v is a number, but ~u× ~v is a vector. The following theorem shows

some of the properties of cross product are similar to dot product, but many are

different.

Theorem 3. Cross product has the following properties:

(1) ~u× ~v is orthogonal to both ~u and ~v, i.e.

~u · (~u× ~v) = 0, ~v · (~u× ~v) = 0.

(2) ||~u× ~v|| = ||~u|| · ||~v|| sin θ (compare ~u · ~v = ||~u||||~v|| cos θ)

Notice that this is the area of the parallelogram spanned by the vectors ~u and

~v.

It follows ||~u× ~v|| ≤ ||~u|| · ||~v|| where the equality holds if and only if ~u ⊥ ~v.

(3) (a) ~u× ~v = −(~v × ~u) (compare ~u · ~v = ~v · ~u)

(b) ~u× (~v + ~w) = (~u× ~v) + (~u× ~w)

(c) (~u+ ~v) × ~w = (~u× ~w) + (~v × ~w)

(d) k(~u× ~v) = (k~u) × ~v = ~u× (k~v)

(e) ~u×~0 = ~0 × ~u = ~0



















similar to dot product

(f) ~u× ~u = ~0 (compare ~u · ~u = ||~u||2)
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(4) If ~a = 〈a1, a2, a3〉,~b = 〈b1, b2, b3〉 and ~c = 〈c1, c2, c3〉, then

~a · (~b× ~c) =

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

(5) |~a · (~b×~c)| is the volume of the parallelepiped spanned on the vectors ~a,~b and

~c.

Proof: We only prove (4) and (1).

We prove (4) first and then use (4) to deduce (1).

Proof of (4):

~b× ~c =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

b2 b3
c2 c3

∣

∣

∣

∣

~i−
∣

∣

∣

∣

b1 b3
c1 c3

∣

∣

∣

∣

~j +

∣

∣

∣

∣

b1 b2
c1 c2

∣

∣

∣

∣

~k

Hence

~a · (~b× ~c) = a1

∣

∣

∣

∣

b2 b3
c2 c3

∣

∣

∣

∣

− a2

∣

∣

∣

∣

b1 b3
c1 c3

∣

∣

∣

∣

+ a3

∣

∣

∣

∣

b1 b2
c1 c2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

Proof of (1) (using (4)):

~u · (~u× ~v) =

∣

∣

∣

∣

∣

∣

u1 u2 u3

u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

= 0,

because the first and second rows are the same. 2
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Lecture 3 Linear Functions, Lines and Planes

3.1 Linear Functions

A linear function of one variable is given by an equation of the form

y = f(x) = mx+ b,

where m, b are real parameters. Its graph is a line in the xy-plane with slope m and

y-intercept b.

Linear functions are easy to handle, yet they can serve as good models for many

processes in science, nature and economy. Even non-linear processes can often be

modelled approximately using linear functions. The means to do this is differential

calculus. A function f(x) that is differentiable at some point x0 can be expressed as

f(x) = f(x0) + f ′(x0)(x− x0) + e(x, x0),

where e(x, x0 is a small error term. The function f(x0) + f ′(x0)(x − x0) = mx + b

is a linear function with m = f ′(x0) and b = f(x0) − f ′(x0)x0. The error term is

small in the sense that it tends ‘faster’ to zero than the linear function x− x0 when

x approaches x0. More precisely, even the ratio of the two small quantities tends to

zero:
e(x, x0)

x− x0

→ 0 as x→ x0.

Indeed,

lim
x→x0

e(x, x0)

x− x0
= lim

x→x0

f(x) − f(x0) − f ′(x0)(x− x0)

x− x0
= lim

x→x0

f(x) − f(x0)

x− x0
−f ′(x0) = 0

holds if and only if

lim
x→x0

f(x) − f(x0)

x− x0
= f ′(x0),

which is the definition of the derivative f ′(x0).

Linear functions of several variables have the form

f(x, y) = ax+ by + d

f(x, y, z) = ax+ by + cz + d

f(x1, x2, . . . , xn) = a1x1 + a2x2 + · · · + anxn + d

in the case 2, 3 or n variables, respectively. Here a, b, c, d, a1, . . . , as are parameters.

We will investigate their geometric meaning later.

The role of linear functions of several variables is similar to linear functions of

one variable.
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3.2 Linear mappings

A linear mapping from n-dimensional space Cn to m-dimensional space Rm is given

by m linear functions

y1 = f1(x1, . . . , xn) = a11x1 + a12x2 + · · ·a1nxn + b1

y2 = f2(x1, . . . , xn) = a21x1 + a22x2 + · · ·a2nxn + b2
...

ym = fm(x1, . . . , xn) = am1x1 + am2x2 + · · ·amnxn + bn

In matrix notation this can be written as

~y = A~x + ~b,

where ~x is a column vector in Rn, ~b and ~y are column vectors in Rm and A is an

m× n matrix.

The geometric meaning of ~b is a parallel displacement in direction of the vector
~b. The columns of A are the images of the standard vectors











1

0
...

0











,











0

1
...

0











, . . . ,











0

0
...

1











.

Important examples of linear mappings are rotations. A rotation in the plane

about the origin at an angle φ is described by

y1 = cos φx1 − sinφx2

y2 = sin φx1 + cosφx2.

Here ~b = ~0 and

A =

(

cos φ − sin φ

sinφ cosφ

)

.

Notice that detA = 1.

Rotations in 3-dimensional space are a bit more complicated. Any rotation in

3-dimensional space would map the standard vectors ~i, ~j, ~k to a triple of mutually

perpendicular unit vectors~i′, ~j′, ~k′. Such rotation is completely determined by those

vectors.
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Simple examples are rotations about one of the coordinate axes. E.g. a rotation

about the ~k-axis corresponds to

A =





cos φ − sin φ 0

sinφ cosφ 0

0 0 1



 .

Geometrically we can decompose any rotation into a sequences of 3 simple ones

about the three axes. The determinant of any rotation matrix in 3-dimensional

space is 1.

We can now prove the fact stated in the previous lecture that ‖~u × ~v‖ =

‖~u‖‖~v‖ sin θ. Assume ~u× ~v 6= ~0. Let ~w be the unit vector

~w =
1

‖~u× ~v‖~u× ~v.

Then

‖~u× ~v‖ = ~w · ~u× ~v = det

∣

∣

∣

∣

∣

∣

w1 w2 w3

u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

.

Now we apply a rotation in space that maps ~w to ~k and ~u to a multiple of ~i. Since

~v is perpendicular to ~w its image is in the~i,~j plane. The determinant of the matrix

above does not change since the determinant of the rotation matrix is 1. But in the

new coordinates we may assume that

~u = 〈u1, 0, 0〉
~v = 〈v1, v2, 0〉
~w = 〈0, 0, 1〉

and

‖~u× ~v‖ = det

∣

∣

∣

∣

∣

∣

0 0 1

u1 0 0

v1 v2 0

∣

∣

∣

∣

∣

∣

= u1v2.

This is clearly the area of the parallelogram spanned by ~u, ~v since u1 is the length

of the base side and v2 is the hight.

The following fact will be used later: The cube of volume 1 spanned by the

standard vectors

~i =





1

0

0



 , ~j =





0

1

0



 , ~j =





0

0

1




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is mapped under a linear mapping with matrix A to a parallelepiped spanned by

the vectors




a11

a21

a31



 ,





a12

a22

a32



 ,





a13

a23

a33





of volume detA. Hence a linear mapping stretches the volume of a solid by a factor

of detA.

3.3 Lines

In 2-space or 3-space, a line is determined by a point P0 on it, and a direction

parallel to it. Here the point P0 will be given by its coordinates and the direction

by a non-zero vector ~v.

First, consider the case of a line in 2-space, which passes through P0 = (x0, y0)

and parallel to ~v = 〈a, b〉. Let P = (x, y) be a general point on the line. Then−−→
P0P = 〈x−x0, y−y0〉 is parallel to ~v = 〈a, b〉. Now we use the fact that two vectors

~u and ~v are parallel if and only if ~u = t~v for some scalar t.

Hence,
−−→
P0P = t~v for some scalar t,

i.e. 〈x− x0, y − y0〉 = t〈a, b〉
or x− x0 = ta, y − y0 = tb.

v

P0

Now, when we let t run through (−∞,∞), the point (x, y, z) determined by the

above formulas runs through the entire line. We say

x = x0 + ta, y = y0 + tb, t a parameter

is the parametric equation for the line passing through P0 = (x0, y0), and parallel

to ~v = 〈a, b〉.

In the case of 2 dimension, he two parametric equations can be reduced to one

single equation by eliminating the parameter t. Multiplying the first equation by b

and subtracting the second equation multiplied by a we get

b(x− x0) − a(y − y0) = 0.

Notice that the vector ~n = 〈b,−a〉 is perpendicular to ~v, since the dot product

~n · ~v = 0. Such vector is called normal vector for the line and therefore this

equation is called the point-normal equation. It can be rewritten in the form

Ax+By + C = 0 (1)
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with A = b, B = −a, C = ay0− bx0. If B 6= 0 we obtain the usual ‘slope-y-intercept

equation’ by solving for y:

y = −A
B
x− C

B
.

If B = 0 the line is vertical and has no ‘slope-y-intercept equation’.

Remark. If we divide equation (1) by the length of the normal vector
√
A2 +B2

we obtain the so-called Hesse normal form

A√
A2 +B2

x+
B√

A2 +B2
y +

C√
A2 +B2

= 0.

There are angles φ1, φ2 = π
2
− φ1 such that A√

A2+B2 = cosφ1 and B√
A2+B2 = sinφ1 =

cosφ2. The angles φ1, φ2 are the ones formed by the normal and the x and y-axes,

respectively. The absolute value |C|√
A2+B2 gives the distance of the line to the origin.

(Try to prove this.)

We rewrite now the parametric equation as vector equation. Let O be the

origin and denote ~r =
−→
OP , ~r0 =

−−→
OP0. Then

−−→
P0P = ~r − ~r0 and the line can be

represented by

~r − ~r0 = t~v, or ~r = ~r0 + t~v, t a parameter.

This equation can be used in 3 or, more generally, in any n-dimensional space.

In 3-space, with P0 = (x0, y0, z0), ~v = 〈a, b, c〉, ~r = 〈x, y, z〉 and ~r0 = 〈x0, y0, z0〉,
the parametric equations become:

x = x0 + ta, y = y0 + tb, z = z0 + tc — parametric equation.

~r = ~r0 + t~v — vector equation.

Notice that eliminating the parameter t from these equations leaves us still with

2 equations. If a 6= 0 we find

y =
b

a
x+ y0 −

b

a
x0

z =
c

a
x+ z0 −

c

a
x0

A 1-dimensional line in 3-space cannot be described by a single linear equation

because one equation lowers the dimension only by 1, so 2 equations are needed4.

4This wouldn’t be true if we permitted non-linear equations. E.g. y2 + z2 = 0 describes the

x-axis {y = 0, z = 0}.



18 3.4 Planes in 3-space

Example 1. Find an equation of the line L which passes through P1(x1, y1, z1) and

P2(x2, y2, z2) where P1 6= P2.

Solution: If we can find a vector to which the line is parallel, then we can use the

formulas discussed above to find the equation. Clearly
−−→
P1P2 = 〈x2−x1, y2−y1, z2−

z1〉 is such a vector. Hence the parametric equation is

x = x1 + t(x2 − x1), y = y1 + t(y2 − y1), z = z1 + t(z2 − z1).

In vector form

~r = 〈x1, y1, z1〉 + t
−−→
P1P2. 2

Example 2. Show that the vector ~n = 〈A,B〉 is perpendicular to the line Ax +

By + C = 0.

Proof: Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the line, i.e.

Ax1 +By1 + C = 0, Ax2 +By2 + C = 0.

Then it suffices to show ~n = 〈A,B〉 is perpendicular to
−−→
P1P2 = 〈x2−x1, y2−y1〉,

i.e. to show ~n · −−→P1P2 = 0.

We calculate

~n · −−→P1P2 = A(x2 − x1) +B(y2 − y1)

= Ax2 +By2 − (Ax1 +By1)

= −C − (−C)

= 0

and hence prove what we wanted. 2

3.4 Planes in 3-space

A plane in 3-space is uniquely determined by a point P0 = (x0, y0, z0) on it and a

vector ~n = 〈A,B,C〉 perpendicular to it. Such a vector is called a normal vector

of the plane.
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A general point P = (x, y, z)

is on the plane if and only if−−→
P0P is perpendicular to ~n, i.e.

−−→
P0P · ~n = 0.

Since
−−→
P0P = 〈x− x0, y − y0, z − z0〉 and

~n = 〈A,B,C〉, we have

−−→
P0P · ~n = A(x− x0) +B(y− y0) +C(z − z0),

and the equation of the plane is
P

P0

n

A(x− x0) +B(y − y0) + C(z − z0) = 0

This is called the point-normal form of the equation of the plane.

Note that on simplifying the above equation for the plane, we see that the equa-

tion has the form

Ax+By + Cz +D = 0 where D = −Ax0 − By0 − Cz0. (2)

Now, if C 6= 0 this can be rewritten as a ‘graph’ equation

z = −A
C
x− B

C
y − D

C
. (3)

Notice that one linear equation in 3-space lowers the dimension down by one to

a 2-dimensional plane.

Remark. There is also a Hesse normal form for planes in 3-space. Divide equa-

tion (2) by
√
A2 +B2 + C2. Then there are angles φ1, φ2, φ3 such that A√

A2+B2+C2 =

cosφ1,
B√

A2+B2+C2 = cosφ2,
C√

A2+B2+C2 = cosφ3. The angles φ1, φ2, φ3 are the angles

between the normal and the respective axes. The number |D|√
A2+B2+C2 is the distance

of the plane to the origin O(0, 0, 0).

Example 3. If 〈A,B,C〉 6= ~0, then the equation

Ax+By + Cz +D = 0

describes a plane having normal vector ~n = 〈A,B,C〉. (Compare with example 2

above: Ax+By + C = 0 is a line having normal vector ~n = 〈A,B〉.)

Proof: Since 〈A,B,C〉 6= 0, at least one of the three components A,B,C is not

zero. Suppose C 6= 0 (the other cases can be proved similarly). Then for any given

x0, y0, we can find a unique z0 such that the graph equation (3) and hence the plane

equation is satisfied. Substituting this into

Ax+By + Cz +D = 0
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we see the equation is equivalent to

A(x− x0) +B(y − y0) + C(z − z0) = 0.

This is a point-normal form of the equation of a plane with normal vector ~n =

〈A,B,C〉 passing through the point (x0, y0, z0). 2.

Example 4. Find an equation of the plane through three different points P1(x1, y1, z1),

P2(x2, y2, z2) and P3(x3, y3, z3).

Solution We need to find a normal vector for the plane.

With the three given points, we can form two vectors
−−→
P1P2 and

−−→
P1P3, both

lying on the plane. According to the properties of cross product,
−−→
P1P2 ×

−−→
P1P3 is

perpendicular to both
−−→
P1P2 and

−−→
P1P3, hence to the plane.

Thus we can use ~n =
−−→
P1P2 ×

−−→
P1P3 as a normal vector.

P

P

P

n

1

2

3

Since
−−→
P1P2 = 〈x2 − x1, y2 − y1, z2 − z1〉 and

−−→
P1P3 = 〈x3 − x1, y3 − y1, z3 − z1〉

and the equation can be written as

〈x− x1, y − y1, z − z1〉 · ~n = 0

we can use property (4) for cross product to write the equation above in the following

neat form:
∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣

∣

∣

∣

∣

∣

= 0

2

Example 5. Find the distance d between P0(x0, y0, z0) and the plane Ax + By +

Cz +D = 0.

Solution We generalize the method used in Example 2, Lecture 2.
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Let Q = (x1, y1, z1) be any point on the

plane, and hence it satisfies

Ax1 +By1 + Cz1 +D = 0.

Then

d = ‖proj~n
−−→
QP0‖,

where ~n = 〈A,B,C〉 is a normal vector.

We have

Q
P

n

0

proj~n
−−→
QP0 =

~n · −−→QP0

‖~n‖2
~n

=
a(x0 − x1) + b(y0 − y1) + c(z0 − z1)

a2 + b2 + c2
~n

‖proj~n
−−→
QP0‖ =

|A(x0 − x1) +B(y0 − y1) + C(z0 − z1)|
A2 +B2 + C2

‖~n‖

=
|Ax0 +By0 + Cz0 − (Ax1 +By1 + Cz1)|

A2 +B2 + C2

√
A2 +B2 + C2

=
|Ax0 + Cy0 + Cz0 +D|√

A2 +B2 + C2
(using Ax1 +By1 + Cz1 = −D)

Thus

d =
|Ax0 +By0 + Cz0 +D|

|
√
A2 +B2 + C2

.

2
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Lecture 4 Quadratic Surfaces

4.1 Quadratic Functions

Quadratic functions of one variable

q(x) = ax2 + bx+ c

with parameters a 6= 0, b, c are the next simplest after linear functions. They are also

often used to model processes in nature, science and economy. The Taylor formula

tells us that a function f(x) that has continuous derivatives up to third order can

be approximated by a quadratic function in the following way:

f(x) = f(x0)+f ′(x0)(x−x0)+
1

2
f ′′(x0)(x−x0)

2 + e(x, x0) = ax2 + bx+ c+ e(x, x0),

where a = f ′′(x0)
2

, b = f ′(x0) − f ′′(x0)x0, c = f(x0) − f ′(x0)x0 + f ′′(x0)
2

x2
0 and the

error term

e(x, x0) =
1

6
f ′′′(ξ)(x− x0)

3

tends to 0 even faster than the quadratic function (x− x0)
2 as x tends to x0, i.e.

lim
x→x0

e(x, x0)

(x− x0)2
= 0.

This has been used to investigate critical points for local maxima and minima.

Since the graph of a quadratic function is a parabola with an absolute minimum

at its vertex if a > 0 or a maximum if a < 0 one concludes that a function that

is two times differentiable has a local minimum or maximum at a critical point if

a = f ′′(x0)
2

> 0 or a = f ′′(x0)
2

< 0. Indeed, if f ′(x0) = 0 (for x0 being critical) we have

f(x) ≈ 1

2
f ′′(x0)(x− x0)

2 + f(x0).

The situation of many variables is similar, but slightly more complicated because

of the large amount of possible quadratic terms. Let us look first into the case of

two variables.

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f.

We introduce a more systematic notation that uses indices and turns out to be

even more useful in higher dimensions. Denote the first variable x by x1 and the

second variable y by x2. Then denote a = a11, b = 2a12 = 2a21, c = a22, d = a1,

e = a2, f = a. The indices of the new a’s tell us immediately how many and which

factors x1 or x2 follow. Also we don’t need to invent new letters for the huge amount
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of coefficients that occur in higher dimensions, and we may use sigma notation. The

equation becomes

f(x1, x2) = a11x
2
1 +2a12x1x2 +a22x

2
2 +a1x1 +a2x2 +a =

2
∑

i=1

2
∑

j=1

aijxixj +
2
∑

i=1

aixi +a.

In three dimensions we get

f(x1, x2, x3) =a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3+

+ a1x1 + a2x2 + a3x3 + a

=
3
∑

i=1

3
∑

j=1

aijxixj +
3
∑

i=1

aixi + a.

In higher dimension we only need to replace 3 as upper bound of the summation

by the dimension n

f(x1, x2, . . . , xn) =

n
∑

i=1

n
∑

j=1

aijxixj +

n
∑

i=1

aixi + a.

4.2 Quadratic Curves

In Math102 we have studied implicit equations of curves F (x, y) = 0

A second-degree equation in x, y has the general form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0. (4)

It gives a quadratic curve5. By switching to an alternative coordinate system we

can significantly simplify the equation (4). In a first step we will apply a rotation

of the plane about the origin by a suitable angle φ in order to get rid of the mixed

term Bxy.

Recall that such rotation is performed by a mapping

x = cos φ u+ sinφ v (5)

y = − sin φ u+ cosφ v

where x, y are the old coordinates and u, v are the new coordinates. You may check

that the unit vectors ~i = 〈1, 0〉 and ~j = 〈0, 1〉 are mapped to a pair of mutually

perpendicular unit vectors.

5Quadratic curves are often called ‘conic sections’ because they arise when a cone and a plane

intersect in 3-space.
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Theorem. By a suitable rotation of the form (5) the equation (4) turns into

A′u2 + C ′v2 +D′u+ E ′v + F ′ = 0,

where A′, C ′, D′, E ′, F ′ are some new coefficients.

Proof. By plugging the expressions (5) for x, y into the equation (4) we find the

coefficient in front of uv to be

B′ = 2A cosφ sinφ+B(cos2 φ− sin2 φ)− 2C sinφ cosφ = (A−C) sin 2φ+B cos 2φ.

Here we used standard trigonometric formulae. To make this expression zero we

need

cotφ =
C −A

B
.

If B 6= 0 this determines a unique angle φ between 0 and π. If B = 0 the mixed

term didn’t occur in the first place. 2

Without developing the relevant theory (this will be left to Linear Algebra

Pmth213) we notice that the new coefficients written as a matrix can be computed

in the following way:

(

A′ B′

2
B′

2
C ′

)

=

(

cosφ − sinφ

sin φ cos φ

)(

A B
2

B
2

C

)(

cosφ sinφ

− sinφ cosφ

)

.

(You may check this by direct computation.) By our choice of φ we have B′ = 0.

In the classification of quadratic curves below you will see that the type of curve

depends on whether A′ and C ′ are positive, negative or zero. Notice that A′ and C ′

are the eigenvalues6 Of the matrix at the left hand side. It turns out that the old

and new coefficient matrices have the same eigenvalues, determinant (which is the

product of the eigenvalues) and trace (which is the sum of the entries at the main

diagonal, hence the sum of the eigenvalues). It follows that the eigenvalues have the

same sign if the determinant A′C ′ = AC − B2

4
is positive and opposite signs if the

determinant is negative. If both eigenvalues have the same sign then it is the sign

of A.

Assume now that the quadratic equation has no mixed term. The second step

depends on whether A,C are zero or not. If A 6= 0 and C 6= 0 we use a shift of the

coordinate system to get rid of D and E. By completing the squares we find

Ax2 + Cy2 +Dx+ Ey + F = A(x+
D

2A
)2 + C(y +

E

2C
)2 + F − D2

4A
− E2

4C
= 0.

6You may recall the concept of eigenvalues from Math101. A more thorough theory of eigen-

values will be developed in Pmth213.



4.2 Quadratic Curves 25

Hence the equation takes the form

A(x− x0)
2 + C(y − y0)

2 = F ′,

where x0 = − D
2A

, y0 = − E
2C

, F ′ = D2

4A
+ E2

4C
− F .

If A = 0 but C 6= 0 or A 6= 0 and C = 0 then we complete the square for the

variable with the non-vanishing coefficient and leave the other unchanged to get

C(y − y0)
2 +Dx = F ′ or A(x− x0)

2 + Ey = F ′.

The following are the representative examples.

1. If A > 0, B > 0 and F ′ > 0 (or A < 0, B < 0 and F ′ < 0) we divide by F ′

and get the equation of an ellipse with half-axes a =
√

F ′/A and b =
√

F ′/C

centred at (x0, y0).

Ellipse:
(x− x0)

2

a2
+

(y − y0)
2

b2
= 1

x

y

b
a

2. If A 6= 0 and E 6= 0 we may divide by E and find a vertical parabola with

vertex (x0, y0).

Parabola: y − y0 = a(x− x0)
2

Here a = −A
E

and y0 = −F ′

E
.

(a>0)

x

y

3. If C 6= 0 and D 6= 0 we may divide by D and find a horizontal parabola with

vertex (x0, y0).

x− x0 = b(y − y0)
2

Here b = −C
D

and x0 = −F ′

D
.

x

y

(b>0)
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4. If A > 0, C < 0 and F ′ > 0 (or A < 0, C > 0 and F ′ < 0) we divide by F ′

and find a hyperbola.

Hyperbola:
(x− x0)

2

a2
− (y − y0)

2

b2
= 1

Here a =
√

F ′/A, b =
√

−F ′/C.

x

y

5. If A > 0, C < 0 and F ′ < 0 (or A < 0, C > 0 and F ′ > 0) we divide by −F ′

and find again a hyperbola.

(x− x0)
2

a2
− (y0 − y0)

2

b2
= −1

Here a =
√

−F ′/A, b =
√

F ′/C.

x

y

6. The remaining cases are in some sense degenerate and not really quadratic

curves. We list them for the sake of completeness.

(a) If A > 0, C > 0, F ′ = 0 (or A < 0, C < 0, F ′ = 0), the equation becomes

A(x− x0)
2 + C(y − y0)

2 = 0, which is a single point. (Which?)

(b) If A > 0, C < 0, F ′ = 0 (or A < 0, C > 0, F ′ = 0), the equation

A(x − x0)
2 + C(y − y0)

2 = 0 describes a pair of crossing lines, namely,

y = y0 ±
√

−A/C(x− x0)

(c) If A > 0, C > 0 and F ′/A < 0 (or A < 0, C < 0 and F ′/A < 0) we get

A(x− x0)
2 + C(y − y0)

2 = F ′ , which is the empty set.

(d) If A 6= 0, C = 0, E = 0 and F ′/A < 0 (or A = 0, C 6= 0, D = 0 and

F ′/C < 0) we get (x − x0)
2 = F ′/A (or (y − y0)

2 = F ′/C), which is the

empty set.

(e) If A 6= 0, C = 0, E = 0 and F ′/A > 0 (or A = 0, C 6= 0, D = 0 and

F ′/C > 0) we get x = x0 ±
√

F ′/A (or y = y0 ±
√

F ′/C), which is a pair

of parallel lines.

(f) If A 6= 0, C = 0, E = 0 and F ′ = 0 (or A = 0, C 6= 0, D = 0 and F ′ = 0)

we get (x− x0)
2 = 0 (or (y − y0)

2 = 0), which is a single line.
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4.3 Quadratic Surfaces

A second-degree equation in x, y, z has the general form

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0.

It gives a quadric surface (a quadric for short). A classification of these surfaces

would be similar to the classification of quadratic curves carried out above, but

requires more effort and time. We ignore here the degenerate cases and list the 6

important types:

Ellipsoid:
x2

a2
+
y2

b2
+
z2

c2
= 1

o

z

Hyperboloid of one sheet:
x2

a2
+
y2

b2
− z2

c2
= 1

z

o

Hyperboloid of two sheets:
x2

a2
+
y2

b2
− z2

c2
= −1

z

o

Elliptic cone: z2 =
x2

a2
+
y2

b2

z

o

Elliptic paraboloid: z =
x2

a2
+
y2

b2

z

o
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Hyperbolic paraboloid: z =
y2

b2
− x2

a2

z

The most important quadratic surfaces for this unit are the paraboloids because

they approximate the graphs of functions at its critical point and show whether the

critical point is a maximum, a minimum or neither of them. Clearly,

(z − z0) = A(x− x0)
2 + C(y − y0)

2

is a ‘cup-like’ elliptic paraboloid with vertex at (x0, y0, z0), i.e (x0, y0, z0) is a local

minimum if both A,C are positive and an upside down cup-like elliptic paraboloid

with vertex at (x0, y0, z0), i.e (x0, y0, z0) is a local maximum if both A,C are negative.

If A and C have opposite sign then the resulting surface is the ‘saddle-like’

hyperbolic paraboloid, i.e we have neither maximum nor minimum.

The cases when A or C (or both) are zero are indecisive.

If we started with a paraboloid of the form

(z − z0) = A(x− x0)
2 + 2B(x− x0)(y − y0) + C(y − y0)

2

we can perform a rotation in the x, y plane about (x0, y0) exactly in the same way as

in the classification of quadratic curves to get rid of the mixed term 2B(x−x0)(y−y0).

Without doing this we can decide whether the critical point (x0, y0) is a maximum,

minimum or saddle point by looking at the determinant

det

∣

∣

∣

∣

A B

B C

∣

∣

∣

∣

= AC −B2

and the coefficient A. IF AC−B2 > 0 we have a maximum or minimum depending

on whether A < 0 or A > 0. If AC−B2 < 0 we have a saddle. The case AC−B2 = 0

is indecisive.

4.4 Sketching Surfaces

Sketching the graph of a surface is usually much more difficult than sketching a

curve. One practical way to sketch a surface is by using a method called mesh

plot: one builds up the shape of the surface using curves obtained by cutting the

surface with planes parallel to the coordinate planes.
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The curve of intersection of a surface with a plane is called the trace of the

surface in the plane.

Let us now look at several examples to see how the mesh plot method can be

used in sketching surfaces.

Example 1. Sketch the graph of the surface x2 − y2

4
+ z2 = 1.

Solution: For any fixed y value, the equation can be written as x2 + z2 = 1 +
y2

4
which gives a circle (for fixed y) in the xz-plane. If we take y = k, and put the

circle in the plane y = k (by moving the one in the xz-plane and keeping the motion

parallel to the y-axis), then when we choose different k, we obtain many circles

which are parallel but with different radii (the circle on the plane y = k has radius
√

1 +
k2

4
).

y

z

x

k=-2

k=-1
k=0

k=1

k=2

y

z

x

The above graphs show the circles (k = −2,−1, 0, 1, 2) and a sketch of the surface

obtained by smoothly connecting these circles. 2

Example 2. Sketch the graph of z =
y2

4
− x2

9
.

Solution: Take y = k. Then the equation becomes z − k2

4
= −1

9
x2, which is of the

form (z − z0) = ax2 and hence is a parabola. The following graphs show various

parabolas obtained by varying k and a sketch of the surface by connecting these

parabolas.
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z

x

y

z

x

y

Example 3. Sketch the graph of 4x2 + 4y2 + z2 + 8y − 4z = −4.

Solution: We can change the equation into one of the standard forms to help us

to know the shape of the surface. We use the completing squares method:

4x2 + (4y2 + 8y + 4) + (z2 − 4z + 4) = −4 + 4 + 4,

i.e.

4x2 + 4(y + 1)2 + (z − 2)2 = 4,

or

x2 + (y + 1)2 +
(z − 2)2

4
= 1.

Thus we know it represents an ellipsoid with center (0,−1, 2).

z’

y’

x’

x

y

z

Write x′ = x, y′ = y+1 and z′ = z−2. Then the equation becomes x′2 + y′2 +
z′2

4
= 1.

We can use the mesh plot method to sketch the surface in the x′y′z′-coordinate sys-

tem and then move it to the xyz-coordinate system according to the relationship

x′ = x, y′ = y + 1 and z′ = z − 2. 2

Note: x′ = x−x0, y
′ = y−y0, z

′ = z−z0 shows the x′, y′, z′ axes are parallel to the

x, y, z axes, respectively, and that the origin (x′, y′, z′) = (0, 0, 0) in the x′y′z′-system

is at the point (x, y, z) = (x0, y0, z0) in the xyz-system.
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Lecture 5 Vector-Valued Functions

5.1 Vector-Valued Functions and Their Graphs.

The function y = f(x) assigns to each x from the domain D ⊂ R a real value y from

the codomain B ⊂ R, and hence it is a real-valued function. The equation of a line

in 2-space has the form

x = x0 + ta, y = y0 + tb,

which can also be written in vector form

~r = ~r0 + t~v,

where ~r = 〈x, y〉, ~r0 = 〈x0, y0〉, ~v = 〈a, b〉.

We can regard ~r = ~r0+t~v as a function which assigns to each t a vector ~r = ~r0+t~v.

Thus we have a vector-valued function here.

In general, a vector-valued function in 2-space has the form

~r(t) = 〈x(t), y(t)〉 = x(t)~i+ y(t)~j,

in 3-space, a vector-valued function has the form

~r(t) = 〈x(t), y(t), z(t)〉 = x(t)~i+ y(t)~j + z(t)~k.

The real-valued functions x(t), y(t) and z(t) are called the components of ~r(t).

Clearly ~r(t) = x(t)~i+ y(t)~j + z(t)~k is equivalent to

x = x(t), y = y(t), z = z(t).

We call this later system of equations the parametric form of the vector-valued

function ~r(t) = x(t)~i+ y(t)~j + z(t)~k.

Let ~r(t) be a vector-valued function in 2-space or 3-space defined on some closed

interval [a, b]. Then the range of ~r describes a curve C, which we call the graph of

~r(t), or the graph of the equation ~r = ~r(t). It might be helpful to visualise a vector

function as the trajectory of a point moving in space in dependence of time t.

Clearly C has the parametric equation

x = x(t), y = y(t) (in 2-space)

x = x(t), y = y(t), z = z(t) (in 3-space).
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Example 1. Describe the graph of the function

~r(t) = cos t~i+ sin t~j, 0 ≤ t ≤ 2π.

Solution: The equation has the parametric form

x = cos t, y = sin t, 0 ≤ t ≤ 2π

which is just the parametric equation for the unit circle x2 +y2 = 1. Thus the graph

is the unit circle. 2

Example 2. Describe the graph of the vector-valued function

~r = (−2 + t)~i+ 3t~j + (5 − 4t)~k, t ∈ R.

Solution: The equation is equivalent to

x = −2 + t, y = 3t, z = 5 − 4t.

We know this is the parametric equation for the line passing through (−2, 0, 5) and

parallel to the vector 〈1, 3,−4〉.

Or we can simply rewrite the vector equation as

~r = 〈−2, 0, 5〉 + t〈1, 3,−4〉.

This is the equation of the line through (−2, 0, 5) parallel to 〈1, 3,−4〉. 2

5.2 Limits, Continuity and Derivatives

The notions of limit, continuity and derivative for real-valued functions can all be

passed to vector-valued functions through the components. Namely,

(1) Limit. For ~r(t) = x(t)~i+ y(t)~j, define

lim
t−→a

~r(t) =
(

lim
t−→a

x(t)
)

~i+
(

lim
t−→a

y(t)
)

~j.

For vectors in 3-space, the definition is similar. If at least one of the limits of

the component functions does not exist, then we say lim
t−→a

~r(t) does not exist.

(2) Continuity. ~r(t) defined on some domain D ⊂ R is said to be continuous at

t0 ∈ D7 if

7Sometimes the condition that ~r(t) is defined at t0 is stated explicitly, but we take the point

of view that continuity or non-continuity are notions that make sense only for points that are a

priori in the domain of the function.
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(a) lim
t−→t0

~r(t) exists and

(b) lim
t−→t0

~r(t) = ~r(t0).

Clearly ~r(t) is continuous at t0 if and only if all its component functions are

continuous at t0.

(3) Derivative. The derivative of ~r(t0) is defined by

~r ′(t0) =
d

dt
~r(t) = lim

h−→0

~r(t0 + h) − ~r(t0)

h
.

This can be reformulated as

~r(t) = ~r(t0) + ~r ′(t0)(t− t0) + ~e(t, t0),

where the error term ~e(t, t0) has the property

lim
t→t0

||~e(t, t0)||
t− t0

= 0, (6)

i.e. ||~e(t, t0)|| tends to zero faster than t− t0. In other words, is approximately

a linear function

~r(t) ≈ ~r0 + t~v,

where ~r0 = ~r(t0)− t0~r
′(t0) and ~v = ~r ′(t0). The error is small, even compared

to the small quantity t− t0.

We introduce here a convenient notation that we will use later, namely

~e(t, t0) = o(t− t0),

to express (6).

More generally the o notation

f(t) = o(g(t)) as t→ t0

has the meaning

lim
t→t0

|f(t)|
|g(t)| = 0.

Notice that this notation is always related to a variable (here) t approaching a

certain limit. This limiting process has to be stated or to be known by default.

Example. x2 = o(x) as x → 0; cosx = o(1) as x → π
2
; xm = o(xn) as x → 0

if m > n, we say xm tends to zero at a higher order that xn.

The convenience of the o is the simplicity of its arithmetic. Without knowing

the particular functions we can state:

1. o(xn) ± o(xn) = o(xn) (as x→ 0.)
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2. o(xn) × o(xm) = o(xn+m).

3. o(xn) = o(xm) if n ≥ m.

4. If f(x) is a bounded function defined in some neighbourhood of 0 then

f(x) o(xn) = o(xn).

Notice that o(x) is not the notation for a function, but only expresses a prop-

erty of a function.

In coordinates the derivative of a vector function is

~r ′(t) = x′(t)~i+ y′(t)~j if ~r(t) = x(t)~i+ y(t)~j,

~r ′(t) = x′(t)~i+ y′(t)~j + z′(t)~k if ~r(t) = x(t)~i+ y(t)~j + z(t)~k.

The following theorem collects some of the most important properties of deriva-

tives for vector-valued functions.

Theorem 1

(1) ~r ′(t0) is tangent to the curve ~r = ~r(t) at ~r(t0) and points in the direction of

increasing parameter.

(2) (a) ( ~C)′ = ~0, where ~C is a constant vector.

(b) (k~r(t))′ = k~r ′(t), where k is a scalar.

(c) [~r1(t) ± ~r2(t)]
′ = ~r1

′(t) ± ~r2
′(t)

(d) [f(t)~r(t)]′ = f(t)~r ′(t) + f ′(t)~r(t) (product rule)

(e) ~r(u(t))′ = ~r ′(u(t))u′(t) (chain rule)

(3) (a) [~r1(t) · ~r2(t)]′ = ~r1
′(t) ·~r2(t)+~r1(t) ·~r2 ′(t) (product rule for dot product)

(b) [~r1(t) × ~r2(t)]
′ = ~r1

′(t) × ~r2(t) + ~r1(t) × ~r2
′(t) (product rule for cross

product)

(4) If ||~r(t)|| is constant for all t, then ~r(t) · ~r ′(t) = 0, i.e., ~r(t) and ~r ′(t) are

always perpendicular.

Proof: For (1) notice that the vector equation of a secant through ~r(t0) and ~r(t1)

is

~r(t) = ~r(t0) + ~vt

where

~v =
~r(t1) − ~r(t0)

t1 − t0
.

The tangent vector is the limiting position of secant vectors where t1 approaches t0.

This limit is, as in single variable calculus, by definition the derivative ~r ′(t0).
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The properties (2) (a)-(e) can be proved in the same way as in one variable

calculus, or, even simpler, reduce to those properties.

Although (3) (a) also reduces to properties of one variable functions we will give

a proof that shows the advantage of the o notation. Notice that our proof below

works for any dimension. We have

~r1(t) = ~r1(t0) + ~r1
′(t0)(t− t0) + o(t− t0)

~r2(t) = ~r2(t0) + ~r2
′(t0)(t− t0) + o(t− t0)

By forming the dots product of both sides and using dot product rules we get

~r1(t) · ~r2(t) =~r1(t0) · ~r2(t0) + ~r1(t0) · ~r2 ′(t0)(t− t0) + ~r1
′(t0)(t− t0) · ~r2(t0)+

+ (~r1(t0) + ~r1
′(t0)(t− t0)) · o(t− t0)

+ (~r2(t0) + ~r2
′(t0)(t− t0)) · o(t− t0)

=~r1(t0) · ~r2(t0) + (~r1(t0) · ~r2 ′(t0) + ~r1
′(t0) · ~r2(t0))(t− t0) + + o(t− t0)

Here we have used that ~r1(t0)+~r1
′(t0)(t−t0) and ~r2(t0)+~r2

′(t0)(t−t0) are bounded

in some neighbourhood of t0, i.e.

||~r1(t0) + ~r1
′(t0)(t− t0)|| ≤M

||~r2(t0) + ~r2
′(t0)(t− t0)|| ≤M

and therefore, by the Cauchy-Schwarz inequalities,

|(~r1(t0) + ~r1
′(t0)(t− t0)) · o(t− t0)| ≤M || o(t− t0)|| = o(t− t0)

|(~r2(t0) + ~r2
′(t0)(t− t0)) · o(t− t0)| ≤M || o(t− t0)|| = o(t− t0).

This line proves the claim.

The proof of (3) (b) is exactly the same with · replaced by ×.

To prove (4), let us first recall that ||~r(t)||2 = ~r(t) · ~r(t). Hence ~r(t) · ~r(t) ≡ C

for all t.

It follows that

0 = (C)′ = (~r(t) · ~r(t))′

= ~r ′(t) · ~r(t) + ~r(t) · ~r ′(t) (using property (3)(a))

= 2~r(t) · ~r ′(t)

This implies ~r(t) · ~r ′(t) = 0 for all t. The proof for (4) is complete. 2

Example 3
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(a) Find ~r ′(t) for ~r(t) = (2 + t)~j + (3t)~j + (4t− 1)~k

(b) Find ~r ′(t) and ~r ′(0) for ~r(t) = − sin t~i+ cos t~j.

Solution:

(a) ~r ′(t) = (2 + t)′~i+ (3t)′~j + (4t− 1)′~k

= ~i+ 3~j + 4~k

(b) ~r ′(t) = (− sin t)′~i+ (cos t)′~j

= − cos t~i− sin t~j

~r ′(0) = − cos 0~i− sin 0~j

= −~i

2

Note: In part (a), the graph of ~r(t) is a straight line and ~r ′(t) is a constant

vector which is parallel to the line. Recall that property (1) in Theorem 1 says

~r ′(t) is tangent to the line and our example confirms this. In part (b), ||~r(t)|| =
√

(− sin t)2 + (cos t)2 = 1 and property (4) in Theorem 1 says ~r(t) · ~r ′(t) = 0. Here

we can also check directly:

~r(t) · ~r ′(t) = (− sin t~i+ cos t~j) · (− cos t~i− sin t~j)

= (− sin t)(− cos t) + (cos t)(− sin t)

= sin t cos t− cos t sin t = 0.
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Lecture 6 Integration of Vector-Valued Functions,

Arc Length

6.1 Integration

Recall that if ~r(t) = x(t)~i + y(t)~j + z(t)~k, then the derivative of ~r(t) is the vector

function whose components are the derivatives of the components of ~r(t):

~r ′(t) = x′(t)~i+ y′(t)~j + z′(t)~k.

The integral for ~r(t) is defined in the same fashion:

∫ b

a

~r(t)dt =

∫ b

a

x(t)dt ~i+

∫ b

a

y(t)dt ~j +

∫ b

a

z(t)dt ~k.

The fundamental theorem of calculus is also true for vector functions, i.e. if
~R(t) : [a, b] → R3 is a vector function such that

~R ′(t) = ~r(t)

then
∫ b

a

~r(t)dt = ~R(b) − ~R(a).

Any such vector function is called antiderivative and the set of all antiderivatives is

denoted by

∫

~r(t)dt =

∫

x(t)dt ~i+

∫

y(t)dt ~j +

∫

z(t)dt ~k.

Notice that any two antiderivatives differ by a constant vector ~C = c1~i+ c2~j + c3~k,

i.e. an integration constant in each component.

Using the definition and properties for integrals of real-valued functions, one can

prove easily the following properties:

(1)

∫

C~r(t)dt = C

∫

~r(t)dt

(2)

∫

[~r1(t) ± ~r2(t)] dt =

∫

~r1(t)dt±
∫

~r2(t)dt

(3)
d

dt

∫

~r(t)dt = ~r(t)
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Example 1. Find
∫

~r(t)dt and
∫ 1

0
~r(t)dt, where

~r(t) = t2~i+ (2t+ 1)~j

Solution:

∫

~r(t)dt =

∫

t2dt~i+

∫

(2t+ 1)dt~j

=

(

t3

3
+ C1

)

~i+
(

t2 + t+ C2

)

~j

=
t3

3
~i+

(

t2 + t
)

~j + ~C
∫ 1

0

~r(t)dt =

(

t3

3
~i+

(

t2 + t
)

~j

)

∣

∣

∣

1

0
=

1

3
~i+ 2~j.

or

∫ 1

0

~r(t)dt =

∫ 1

0

t2dt~i+

∫ 1

0

(2t+ 1)dt~j

=
t3

3

∣

∣

∣

1

0

~i+ (t2 + t)
∣

∣

∣

1

0

~j

=
1

3
~i+ 2~j

2

6.2 Arc Length

We know from first year calculus that if x′(t) and y′(t) are continuous, then the

curve given by

x = x(t), y = y(t), a ≤ t ≤ b

has arc length

L =
∫ b

a

√

x′(t)2 + y′(t)2 dt.

x

y

(x(b),y(b))

(x(a),y(a))

This formula generalizes to 3-space curves:

The arc length of the curve

x = x(t), y = y(t), z = z(t), a ≤ t ≤ b

is given by

L =
∫ b

a

√

x′(t)2 + y′(t)2 + z′(t)2 dt. y

z

(x(b),y(b),z(b))

(x(a),y(a),z(a))

x
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Example 2. Find the arc length of the curve ~r = a cos t~i+ a sin t~j, 0 ≤ t ≤ 2π.

Solution:

L =

∫ 2π

0

√

x′(t)2 + y′(t)2 dt =

∫ 2π

0

√

(−a sin t)2 + (a cos t)2 dt

=

∫ 2π

0

√

a2(sin2 t+ cos2(t)) dt =

∫ 2π

0

√
a2 dt = 2πa. 2

6.3 Arc Length as a Parameter

If we visualise a curve as the trajectory of a moving object it is clear that the same

trajectory can be travelled at a different speed. This means that the same curve

is represented in the parametric form with different parameters, and thus it has

different parametric equations.

For example,

x(t) = a cos t, y(t) = a sin t, 0 ≤ t ≤ 2π

x(s) = a cos(s2), y(s) = a sin(s2), 0 ≤ s ≤
√

2π

x(u) = a cos(2πe−u), y(u) = a sin(2πe−u), 0 ≤ u <∞

all represent the same curve: a circle

with center (0, 0) and radius a.

y

x
a

To avoid such ambiguity, it is desirable to have a universal parameter for the

parametric equations. This can be done by stipulating that we travel the curve with

speed 1, i.e. 1 length unit i 1 unit of time. In other words, the arc length is used as

parameter. Let us now see how this can be done.

Let C be a given smooth curve. We first introduce the arc length parameter

using the following three steps:
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(1) choose a point P0 on the curve,

called a reference point;

(2) Starting from P0, choose one

direction along the curve to be

the positive direction and

the other to be the negative

direction;

P

P

0

(3) If P is a point on C, let s be the “signed” arc length along C from P0 to P ,

where s is positive if P is in the positive direction from P0 and s is negative if

P is in the negative direction from P0.

Let us suppose that C is initially given by the parametric equations

x = x(t), y = y(t), z = z(t),

and P0 = (x(t0), y(t0), z(t0)), P = (x(t), y(t), z(t)), and the positive direction

of C is the direction of increasing t.

Then we know from the last section that

s =

∫ t

t0

√

x′(u)2 + y′(u)2 + z′(u)2 du

This gives s as a function of t. Differentiating we obtain

ds

dt
=
√

x′(t)2 + y′(t)2 + z′(t)2.

Example 3. Find parametric equations for x = a cos t, y = a sin t, 0 ≤ t ≤ 2π,

using arc length s as a parameter, with reference point for s being (0, a) in the

xy-plane.

Solution: The point (0, a) corresponds to t = π
2

on the curve.

Therefore,

s =

∫ t

π
2

√

x′(u)2 + y′(u)2 du

=

∫ t

π
2

√

(−a sin u)2 + (a cosu)2 · du

=

∫ t

π
2

√
a2 dt = a

(

t− π

2

)

.

Solving for t from s = a
(

t− π
2

)

we obtain

t =
s

a
+
π

2
.
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As t varies from 0 to 2π, s varies from −π
2
a to 3

2
πa. Hence, the parametric

equations in s are

x = a cos
(s

a
+
π

2

)

, y = a sin
(s

a
+
π

2

)

,−π
2
a ≤ s ≤ 3

2
πa.

Or, in vector form

~r = a cos
(s

a
+
π

2

)

~i+ a sin
(s

a
+
π

2

)

~j,−π
2
a ≤ s ≤ 3

2
πa.
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Lecture 7 Unit Tangent and Normal Vectors

7.1 Smooth curves

We call a curve smooth if it has a tangent at each point and the slope of the tangent

changes in a continuous way from point to point. In particular this means that the

curve has no edges or cusps.

If a curve in the xy-plane is described as the graph of a function y = f(x) : (a, b) →
R that has continuous derivative then the curve is a smooth function. However, the

following example shows that if ~r(t) has continuous derivative, the curve ~r = ~r(t)

may not be smooth.

Example 1. Let ~r(t) = t2~i + t3~j, then ~r ′(t) = 2t~i + 3t2~j is continuous. The

parametric form for the graph of ~r(t) is x = t2, y = t3, which is equivalent to

x = |y| 23 and it represents a curve which is not smooth at (0, 0).

x

y

Indeed, the direction of the tangent at ~r(t0) is given by 〈x′(t0), y′(t0)〉 = 〈2t, 3t2〉.
For t0 = 0, the cusp point, this is the zero vector which does not give any direction.

Let us try to look a this curve as a graph. Since the vertical line test gives two

intersection points, the curve is not the graph of a function y = f(x) but it is the

graph of a function x = g(y) = 3
√

y2. Notice that the derivative of g(y) is, according

to the chain rule

g′(y) =
dx

dy
=

dx
dt
dy
dt

=
2t

3t2

and does not exist at t = 0, i.e. (x, y) = (0, 0). The vanishing denominator 3t2 is

clearly the problem here.

If we have a parametric curve 〈x(t), y(t)〉 such that dy
dt

(t0) 6= 0 then the function

y(t) has an inverse t = h(y) on some (possibly very small) interval containing y0 =

y(t0). In this case the derivative h′(y0) = 1
y′(t0)

. This is the statement of the
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inverse function theorem. It follows that x = g(y) = x(h(y)) is the desired

graph equation.

This motivates the following definition.

A parametric curve ~r = ~r(t), a ≤ t ≤ b, is called smooth if

(a) ~r ′(t) exists, (b) ~r ′(t) is continuous in (a, b) and (c) ~r ′(t) 6= ~0 for all t in (a, b)

If ~r(t) = x(t)~i+ y(t)~j + z(t)~k, then (a)-(c) above are equivalent to

(a’) x′(t), y′(t), z′(t) all exist,

(b’) x′(t), y′(t), z′(t) are all continuous in (a, b),

(c’) at least one of x′(t), y′(t), z′(t) is different from 0 for any t in (a, b).

7.2 Unit Tangent Vector

If C : ~r = ~r(t) is a smooth curve (in 2-space or 3-space), then

~T (t) =
~r ′(t)

‖~r ′(t)‖

is well-defined (why?), and it is a vector tangent to the curve with unit length (recall

property (1) in Theorem 1 of Lecture 5). Such a vector is called a unit tangent

vector to C at t.

x

y

z

r(t)

T(t)

Example 2. Find a unit tangent vector to the curve ~r = t2~i+ t3~j at t = t0, where

t0 6= 0.

Solution: ~T (t0) = ~r ′(t0)
‖~r ′(t0)‖ is such a vector.



44 7.3 Principal Normal Vector

We calculate

~r ′(t0) = 2t0~i+ 3t20~j,

‖~r ′(t0)‖ =
√

(2t0)2 + (3t20)
2 =

√

4t20 + 9t40

= |t0|
√

4 + 9t20

Thus

~T (t0) =
2

√

4 + 9t20

~i+
3t0

√

4 + 9t20

~j if t0 > 0

~T (t0) = −
(

2
√

4 + 9t20

~i+
3t0

√

4 + 9t20

~j

)

if t0 < 0.

2

Recall that if ~r = ~r(t) is a smooth curve, then we can introduce the arc length

parameter s at a reference point, say, at t = t0.

s = s(t) =

∫ t

t0

||~r ′(u)||du

From the properties of integrals,

s′(t) =
d

dt

∫ t

0

||~r ′(u)||du = ||~r ′(t)||

If the initial parameter t is already the arc length, i.e. t = s, then s′(t) = t′ = 1

and thus, from the above identity,

||~r ′(t)|| = s′(t) = 1

i.e. ||~r ′(s)|| = 1. Thus, in the arc length parameter, we always have

~T (s) =
~r ′(s)

||~r ′(s)|| = ~r ′(s), or ~T =
d~r

ds
.

7.3 Principal Normal Vector

Recall that if ‖~r(t)‖ ≡ C, then ~r(t) ·~r ′(t) = 0, i.e. ~r(t) and ~r ′(r) are perpendicular:

~r(t)⊥~r ′(t). Applying this result to ~T (t) (note ‖~T (t)‖ ≡ 1), we see ~T (t)⊥~T ′(t). This
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implies that ~T ′(t) is a normal vector to the curve ~r = ~r(t).

When ~T ′(t) 6= ~0, we can normalise it

to obtain

~N(t) =
~T ′(t)

‖~T ′(t)‖
,

called the principal unit normal vec-

tor to C.

T(t)

N(t)

x

y

z

To a smooth curve, at any given point on it, there is a normal plane and any

vector on the normal plane is a normal vector to the curve. ~N(t) is a special normal
vector and has several useful properties in

practical problems. However, we are not going

to persue this matter in this unit.

Normal Plane

C

N

Example 3. Fine ~T (t) and ~N(T ) for the circular helix

~r(t) = a cos t~i+ a sin t~j + ct~k where a > 0, c > 0.

Solution:

~r ′(t) = −a sin t~i+ a cos t~j + c~k

‖~r ′(t)‖ =
√

(−a sin t)2 + (a cos t)2 + c2

=
√

a2(sin2 t+ cos2 t) + c2

=
√
a2 + c2.

Therefore,

~T (t) =
~r ′(t)

‖~r ′(t)‖ =
−a sin t√
a2 + c2

~i+
a cos t√
a2 + c2

~j +
c√

a2 + c2
~k

~T ′(t) =
−a cos t√
a2 + c2

~i− a sin t√
a2 + c2

~j + 0~k

‖~T ′(t)‖ =

√

( −a cos t√
a2 + c2

)2

+

( −a sin t√
a2 + c2

)2

=

√

a2

a2 + c2
=

a√
a2 + c2

~N(t) =
~T ′(t)

‖~T ′(t)‖
= − cos t~i− sin t~j.

2
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Let ~r = ~r(t) = x(t)~i + y(t)~j + z(t)~k be a smooth curve in 3-space. Then at any

given point P0 = (x0, y0, z0) on the curve, say, (x0, y0, z0) = (x(t0), y(t0), z(t0)),

we have a tangent line and a normal plane.

As ~r ′(t0) = x′(t0)~i+ y′(t0)~j + z′(t0)~k

is parallel to the tangent line, and is

P

Normal Plane

Tangent Line

0

normal to the normal plane, we have the following equations:

Tangent line: x = x0+x′(t0)t, y = y0+y
′(t0)t, z = z0+z′(t0)t

Normal plane: x′(t0)(x−x0)+y
′(t0)(y−y0)+z

′(t0)(z−z0) = 0.

If ~r = ~r(t) = x(t)~i + y(t)~j is a smooth curve in 2-space, then we have similar

results but this time we have normal line instead of normal plane to the curve. The

equations are

Tangent line: x = x0+x
′(t0)t, y = y0+y

′(t0)t

Normal line: x′(t0)(x−x0)+y
′(t0)(y−y0) = 0

x

y

P0

Tangent Line

Normal Line

Example 4. Find equations for the tangent line and normal plane to the curve

~r = cos t~i+ sin t~j + t~k at t = π
2
.

Solution:

~r ′(t) = − sin t~i+ cos t~j + ~k.

At t = t0 = π
2
,

~r(t0) = cos(
π

2
)~i+ sin(

π

2
)~j +

π

2
~k

= ~j +
π

2
~k

i.e. x0 = 0, y0 = 1, z0 = π
2
.

~r ′(t0) = − sin
π

2
~i+ cos

π

2
~j + ~k

= −~i+ ~k



7.3 Principal Normal Vector 47

i.e. x′(t0) = −1, y′(t0) = 0, z′(t0) = 1.

Thus the tangent line is

x = −t, y = 1, z =
π

2
+ t;

the normal plane is

−1(x− 0) + 0(y − 1) + 1(z − π

2
) = 0,

i.e.

−x+ z − π

2
= 0.

2.

Example 5. If the 3-space curve ~r = x(t)~i+y(t)~j+ z(t)~k lies in a plane a(x−x0)+

b(y − y0) + c(z − z0) = 0, show that ~T (t) and ~N(t) also lie in this plane.

Proof: To show ~T (t) and ~N(t) lie in the plane, it suffices to show they are perpen-

dicular to the normal ~n = 〈a, b, c〉 of the plane, i.e. to show

~n · ~T (t) = 0, ~n · ~N(t) = 0.

As the curve lies on the plane, the general point (x(t), y(t), z(t)) on the curve

satisfies the equation of the plane:

a(x(t) − x0) + b(y(t) − y0) + c(z(t) − z0) = 0.

That is

~n · (~r(t) − ~r0) = 0, where ~r0 = 〈x0, y0, z0〉.

Differentiate the above identity with respect to t, we have

[~n · (~r(t) − ~r0)]
′ = 0′ = 0

i.e.

~n · ~r ′(t) = 0.

Hence

~n · ~T (t) = ~n · ~r ′(t)

‖~r ′(t)‖ =
1

‖~r ′(t)‖ (~n · ~r ′(t)) = 0.

This shows ~T lies in the plane.

Now differentiate ~n · ~T (t) = 0 we deduce similarly ~n · ~T ′(t) = 0, which implies

~n · ~N(t) = 0. 2.
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Lecture 8 Curvature

Intuitively, curvature, say of a road bend, is reflected by how much you need to turn

the steering wheel when driving along that bend. If you keep the steering wheel

fixed the path along which you drive is a circle. A good measure for the curvature

of a circle is the reciprocal of its radius.

For another approach to curvature we could look at the rate of change of the

direction of the tangent. Bigger curvature would relate to a more rapid change of

the direction. The derivative of the unit tangent vector T (t)

dT

dt

would depend on the parametrisation of the curve (the travel speed along the curve).

Indeed, if τ was a another parameter, so that t = t(τ) depends on τ then

dT

dτ
=
dT

dt

dt

dτ
.

To avoid such dependence on the choice of parameter we use the arc length

parameter s. Now, as s varies, only the direction of ~T (s) changes (its length is

always 1). The derivative of ~T (s), namely d~T
ds
, then measures the rate of change of

direction of the curve ~r = ~r(s). The curvature of the curve is defined by

κ =

∥

∥

∥

∥

∥

d~T

ds

∥

∥

∥

∥

∥

.

Example 1 Show that the two concepts of curvature introduced above are the same

for the circle of radius R: ~r = R(cos t~i+ sin t~j).

First change to arc length parameter.

We choose the point t = 0 as a

reference point and obtain
x

y

s =

∫ t

0

||~r ′(u)||du

=

∫ t

0

√

(−R sin u)2 + (R cosu)2du

=

∫ t

0

Rdu = Rt
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Therefore ~r(s) = R(cos s
R
~i+ sin s

R
~j) and

~T (s) = ~r ′(s) = − sin
s

R
~i+ cos

s

R
~j

~T ′(s) = − 1

R
cos

s

R
~i− 1

R
sin

s

R
~j

κ(s) = ||~T ′(s)|| =

√

(− 1

R
cos

s

R
)2 + (− 1

R
sin

s

R
)2 =

1

R
.

The curvature is always 1
R
, as expected. 2

Changing to arc length parameter according to the formula

s =

∫ t

0

||~r ′(u)||du

could be difficult to use, as the integration could be hard to do.

For example, if ~r(t) = 2 cos t~i+ 3 sin t~j, then

||~r ′(t)|| =
√

(−2 sin t)2 + (3 cos t)2 =
√

4 sin2 t+ 9 cos2 t

and it is difficult to find

∫ t

0

√

4 sin2 u+ 9 cos2 u du.

The following theorem gives us some practical formula to calculate the curvature

without changing to arc length parameter.

Theorem 1. If ~r(t) is a smooth vector-valued function in 2-space or 3-space, and

if ~T ′(t), ~r ′′(t) exist, then

(a) κ = κ(t) =
||~T ′(t)||
||~r ′(t)|| , (b) κ = κ(t) =

||~r ′(t) × ~r ′′(t)||
||~r ′(t)||3 .

Note. In (b), if ~r(t) is in 2-space, i.e. ~r(t) = x(t)~i + y(t)~j, then we write it as

~r(t) = x(t)~i+ yt~j + 0~k in order to be able to perform the cross product (remember

cross product is defined only for 3-space vectors).

Proof.
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(a) Recall that from

s(t) =

∫ t

to

||~r ′(u)||du,

one always has s′(t) = ||~r ′(t)||. Now by the chain rule

~T ′(t) =
d~T

dt
=
d~T

ds
· ds
dt

=
d~T

ds
||~r ′(t)||.

Hence,

||~T ′(t)|| =

∥

∥

∥

∥

∥

d~T

ds

∥

∥

∥

∥

∥

||~r ′(t)||,

and dividing by ||~r ′(t)||, we obtain

κ =

∥

∥

∥

∥

∥

d~T

ds

∥

∥

∥

∥

∥

=
||~T ′(t)||
||~r ′(t)|| .

This proves (a)

(b) Since ||~T (t)|| ≡ 1, by property (4) in Theorem 1, Lecture 5, ~T (t)⊥~T ′(t), i.e.

the angle between these two vectors is θ = π
2
. It follows, as ||~T (t)|| = 1 and

sin θ = sin π
2

= 1,

||~T (t) × ~T ′(t)|| = ||~T (t)|| · ||~T ′(t)|| · sin θ = ||~T ′(t)||.

By definition,

~T (t) =

(

1

||~r ′(t)||

)

~r ′(t).

Therefore

~T ′(t) =

(

1

||~r ′(t)||

)

~r ′′(t) +

(

1

||~r ′(t)||

)′

~r ′(t)

~T (t) × ~T ′(t) =

(

1

||~r ′(t)||

)

~T (t) × ~r ′′(t) +

(

1

||~r ′(t)||

)′

~T (t) × ~r ′(t).

=

(

1

||~r ′(t)||

)2

~r ′(t) × ~r ′′(t) +

(

1

||~r ′(t)||

)′ (

1

||~r ′(t)||

)

~r ′(t) × ~r ′(t).

=

(

1

||~r ′(t)||

)2

~r ′(t) × ~r ′′(t).

Note that we have used ~r ′(t) × ~r ′(t) = ~0.

Now we use the formula proved in part (a) together with what we have been

proved above, namely

||~T ′(t)|| = ||~T (t) × ~T ′(t)||
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and

~T (t) × ~T ′(t) =
~r ′(t) × ~r ′′(t)

||~r ′(t)||2 .

and obtain

κ =
||~T ′(t)||
||~r ′(t)|| =

||~T (t) × ~T ′(t)||
||~r ′(t)||

=

∣

∣

∣

∣

∣

∣

~r ′(t)×~r ′′(t)
||~r ′(t)||2

∣

∣

∣

∣

∣

∣

||~r ′(t)||

=
||~r ′(t) × ~r ′′(t)||

||~r ′(t)||3 . 2

We show now that the two approaches to curvature are equivalent for all plain

curves. Without loss of generality we assume that a curve is given as a graph

y = f(x) and the point at which we want to compute the curvature is the origin.

We choose the coordinate system in such a way that the x-axis is tangent to the

curve at the origin. Thus, f(0) = 0 and f ′(0) = 0 and therefore the curve has the

equation

y = f(x) =
1

2
f ′′(0)x2 + o(x2).

A (concave up) circle passing through the origin and tangent to the x axis has the

equation

x2 + (y −R)2 = R2

or

y = R−
√
R2 − x2 = R −R(1 =

x2

2R2
) + o(x2) =

x2

2R
+ o(x2).

Hence the radius of the best fitting circle is R = 1
f ′′(0)

8.

On the other hand,

~r = 〈x, f(x), 0〉
~r ′ = 〈1, f ′(x), 0〉
~r ′′ = 〈0, f ′′(x), 0〉

and therefore

~r ′ × ~r ′′ = 〈0, 0, f ′′(x)〉
||~r ′ × ~r ′′(0)|| =

√

(f ′′(0))2 = |f ′′(0)|
||~r ′(0)|| =

√

1 + (f ′(x))2 = 1

κ(0) = |f ′′(x)| =
1

R
8If f ′′(0) < 0 the best fitting circle would be concave down with equation x2 + (y + R)2 = R2.

Then a similar computation shows that R = − 1
f ′′(0) = 1

|f ′′(0)| .
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which shows that the curvature is the reciprocal of the radius of the best fitting

circle.

Example 2. Find κ(t) for ~r = (2 cos t)~i+ (3 sin t)~j.

Solution:

~r(t) = (2 cos t)~i+ (3 sin t)~j + 0~k

~r ′(t) = (−2 sin t)~i+ (3 cos t)~j + 0~k

~r ′′(t) = (−2 cos t)~i+ (−3 sin t)~j + 0~k

~r′(t) × ~r ′′(t) =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k

−2 sin t 3 cos t 0

−2 cos t −3 sin t 0

∣

∣

∣

∣

∣

∣

∣

= 6(sin2 t+ cos2 t)~k = 6~k

||~r ′(t) × ~r ′′(t)|| = ||6~k|| = 6

||~r ′(t)|| =
√

(−2 sin t)2 + (3 cos t)2 =
√

4 sin2 t+ 9 cos2 t

κ(t) =
||~r ′(t) × ~r ′′(t)||

||~r ′(t)||3 =
6

(4 sin2 t+ 9 cos2 t)
3
2

. 2

Example 3. Find κ(t) for x = a cos t, y = a sin t, z = ct (a > 0, c > 0).

Solution:

~r(t) = a cos t~i+ a sin t~j + ct~k

~r(t) = −a sin t~i+ a cos t~j + c~k

~r ′′(t) = −a cos t~i+ (−a sin t)~j + 0~k

~r ′(t) × ~r ′′(t) =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k

−a sin t a cos t c

−a cos t −a sin t 0

∣

∣

∣

∣

∣

∣

∣

= (ac sin t)~i− (ac cos t)~j + a2~k

||~r ′(t) × ~r ′′(t)|| =
√

(ac sin t)2 + (−ac cos t)2 + (a2)2

=
√
a2c2 + a4 = a

√
a2 + c2

||~r ′(t)|| =
√

(−a sin t)2 + (a cos t)2 + c2 =
√
a2 + c2

κ(t) =
||~r(t) × ~r ′′(t)||

||~r ′(t)||3 =
a
√
a2 + c2

(
√
a2 + c2)3

=
a

(
√
a2 + c2)2

=
a

a2 + c2

2
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Lecture 9 Multivariable Functions

9.1 Definition of multivariable functions and their natural

domains

Let us first recall that a function of one variable, y = f(x) : D → R, is a rule that

assigns a unique real number f(x) to each point x in some set D of the x-axis. The

set D is called the domain of the function. Mostly the domains of the functions we

considered were open or closed intervals, the whole real line R or half-lines.

A function f of two (or three) real variables, x and y (and z, . . . ), is a rule that

assigns a unique number f(x, y) (f(x, y, z)) to each point (x, y) ((x, y, z)) in some

set D of the xy-plane (xyz-space). The set D is also called the domain of the

function.

The above definition extends naturally to functions of n-real variables, usually

denoted by f(x1,x2, . . . , xn).

If the domain of the function is not specified, then, as in the single variable case,

it is understood that the domain consists of all points at which the formula in the

definition of the function makes sense; this is called the natural domain of the

function.

The procedure of finding the natural domain is similar to single variable func-

tions. First understand the formula as a chain of operations, as you would if you

computed the formula using the calculator. E.g. f(x, y) =
1

log(x2 + y)
is represented

by the following chain:

x→ x2 → x2 + y → log(x2 + y) → 1

log(x2 + y)
.

Each step must be well-defined, which gives a number of conditions: no condition for

x2+y, for log being defined x2+y > 0, for 1/ log(x2+y) being defined log x2 + y 6= 0,

i.e. x2+y 6= 1. In this case the natural domain is given by x2+y > 0 and x2+y 6= 1.

The first condition is an inequality. To understand the geometrical shape of the

corresponding domain one may look at the equality x2 + y = 0 first. This is the

parabola y = −x2 which cuts the xy-plane into two pieces, one where x2 + y > 0

and x2 + y < 0. To find out which one we are interested in it suffices to check for

one point. Since (1, 0) belongs to the set (12 + 0 > 0), it is clearly the upper part

of the two. From this we need to delete the parabola x2 + y 6= 1, i.e. y − 1 = −x2.

The only difference to the analogous problem in single variable calculus is that we

need to handle inequalities and equations that involve several variables and describe

regions in 2 or higher dimensional space.
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Example 1. Find the natural domain of

(a) f(x, y) = ln(x− y2) (b) f(x, y, z) =
1

√

1 − x2 − y2 − z2
.

Solution

(a) For ln(x−y2) to be defined, we need x−y2 > 0 and that is the only restriction.

Therefore the natural domain consists of all the points (x, y) which satisfy

x− y2 > 0. We denote

this set of points as

{(x, y) : x− y2 > 0}.
Geometrically, this set consists

of all the points lying to the right

of the parabola x = y2.

x

y

(b) For the formula to make sense, we need
√

1 − x2 − y2 − z2 6= 0 and 1 − x2 −
y2 − z2 ≥ 0. Combining these two requirements,

we need 1 − x2 − y2 − z2 > 0, i.e.

x2 + y2 + z2 < 1. Thus the natural

domain is {(x, y, z) : x2 + y2 + z2 < 1}.
This set consists of all the points lying

inside the sphere x2 + y2 + z2 = 1. x

y

z

9.2 Graphing multivariable functions

The graph of a function of two variables z = f(x, y) : D → R is the surface

{(x, y, z) : (x, y) ∈ D, z = f(x, y)}

in the xyz-space lying in a curved way over the domain D.

Another way to visualise functions of 2 variables is the method of level curves.

For a fixed value z = k, the equation f(x, y) = k represents a curve in the xy-space,

called a level curve of height k, or level curve with constant k. These are the

curves of intersection of the graph surface with the planes z = k that are parallel

to the xyplane and intersect the z-axis at the level z = k. Such level curves are

often used in practice, e.g. in meteorology the points of equal barometric pressure

are connected by curves (isobars).
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The level curves of the ellipsoid x2 +2y2 + z2 = 1 are empty for k < −1 or k > 1

(the planes z = k do not intersect the ellipsoid). For k = ±1 the level curves are

just a point (0, 0,±1). For −1 < k < 1 the level curves are the ellipses

x2 + 2y2 = 1 − k2.

A three variable function w = f(x, y, z) cannot be realised as a graph in 2

or 3-space. But, similar to level curves, for fixed values w = k, the equations

f(x, y, z) = k represent surfaces in the xyz-space, called a level surfaces of height

k.

Example 2. Describe the graph and level curves for z =
√

1 − x2 − y2.

Solution: Square both sides of the equation z =
√

1 − x2 − y2. It results z2 = 1−
x2−y2, which is equivalent to x2 +y2+z2 = 1, and we know this equation represents

a sphere of radius 1 center (0, 0, 0). However, our initial equation z =
√

1 − x2 − y2

implies that z is always non-negative. Therefore the graph is the upper half of this

sphere, or the upper hemisphere.

To describe the level curves, let us choose a constant k and consider
√

1 − x2 − y2 =

k. This equation can hold for some point (x, y) only if 0 ≤ k ≤ 1, as the left hand

side is always between 0 and 1. On the other hand, for each constant k between 0

and 1,
√

1 − x2 − y2 = k is equivalent to 1−x2 − y2 = k2, or x2 + y2 = 1− k2. This

last equation represents a circle with center (0, 0) and radius
√

1 − k2. 2

x

y

z

z=k

x

y

k=0

Example 3. Describe the level surface for w = x2 + (y − 1)2 + (z − 2)2.

Solution: Let w = k. Then

x2 + (y − 1)2 + (z − 2)2 = k

is a sphere of radius
√
k and center (0, 1, 2) if k ≥ 0.

If k < 0, then the equation can never be satisfied. 2
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9.3 Topological properties of domains

For computing limits and derivatives (which are a special type of limits) functions

had to be defined in some ‘neighbourhood’ of the limit point. On the other hand

for the theorems on extrema and intermediate values of continuous functions it was

essential that the function was defined on a closed interval. To understand the

domain of a multivariable function properly, we need similar notions of open and

closed sets.

If D is a set of points in 2-space, then a point (x0, y0) is called an interior point

of D if there is a circular disk (‘neighbourhood’) with center (x0, y0) and positive

radius which lies entirely in D.
If every such disk contains both points in D

and points not in D, then (x0, y0) is called

a boundary point of D. The set of

all interior points of D is called the interior

of D, and the set of all boundary points

of D is called the boundary of D.

Boundary point

Boundary

Interior

Interior point

In 3-space, the definitions are similar: we replace (x0, y0) by (x0, y0, z0), replace

circular disk by spherical ball.

If a set contains no boundary point, it is called an open set. If a set contains

all its boundary points, it is called a closed set.

The following common terminology is convenient: Any open set containing a

point ~a is called a neighbourhood of ~a. A neighbourhood of ~a from which the

point ~a has been deleted is called a punctured neighbourhood of ~a.

A set S is said to be bounded if it can be put inside some circle or sphere,

otherwise it is unbounded.

A set S is said to be connected if for any two points ~a and ~b of the set there

are finitely many points ~x1, . . . ~xN such that the segments ~a~x1, ~x1~x2, . . . , ~xN−1~xN ,

~xN
~b are all contained in S.

Example 4.

(a) D1 = {(x, y) : x2+y2 ≤ 2} is a closed set as it contains all its boundary points,

its boundary is the circle x2 + y2 = 2. It is bounded.

(b) D2 = {(x, y) : x2 + y2 < 2} is an open set as it contains no boundary point.

The set is bounded.
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(c) D3 = {(x, y) : 1 < x2 + y2 ≤ 2} is neither open nor closed, as it contains part

of its boundary. It is bounded. (For sketches of the sets D1, D2, D3 see the

figure below.)

x

y

xx

yy

Without boundaryWith boundary

Example 5

(a) D1 = {(x, y) : x2 + y2 ≥ 2} consists of all the points lying outside the sphere

x2 + y2 = 2, including the sphere which is its boundary. It is closed and

unbounded.

(b) D2 = {(x, y) : x2+y2 > 2} is D1 without boundary. It is open and unbounded.

(c) D3 = {(x, y) : 1 < x+ y ≤ 2} consists of all the points lying between the two

lines x + y = 1 and x + y = 2. The line x + y = 2 is in D3 but x + y = 1 is

not. This set is unbounded, but it is neither open, nor closed.

xxx

yy y

x+y=2

x+y=1

D1 D2 D3
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Lecture 10 Limits and Continuity

The idea of continuity for multivariable functions is the same as in the case of single

variable functions, namely to make sure that the value of the function changes only a

little if the arguments change a little. Consider a function f(x1, x2) of two variables

defined on some domain D ⊂ R2. Let a = (a1, a2) be a point in the domain and

f(a1, a2) = b. The change of f(x1, x2) from f(a1, a2) = b is considered to be small if

|f(x) − f(a)| = |f(x1, x2) − f(a1, a2)| < ε, (7)

where ε is a small positive number.

We want now to control the magnitude of ε by restricting x = (x1, x2) to a small

neighbourhood of a, i.e. by requiring

||x− a|| =
√

(x1 − a1)2 + (x2 − a2)2 < δ

where δ is a small positive number that depends on ε chosen in such a way that (7)

is satisfied.

Notice that by combining (x1, x2) into one symbol x and (a1, a2) into one symbol

a the definition of continuity becomes exactly like in one variable calculus, with the

only difference that

||x− a|| < δ

is now a distance in the 2-dimensional plane. The condition means that x lies

within a circle centred at a of (small) radius δ. This definition carries over to 3 and

higher dimensional space by setting x = (x1, x2, x3) (or x = (x1, x2, . . . , xn)) and

a = (a1, a2, a3) (or a = (a1, a2, . . . , an)). The distance ||x− a|| is then
√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 (or
√

(x1 − a1)2 + (x2 − a2)2 + · · · + (xn − an)2).

The formal definition of continuity is as follows:

A function f : D → R is continuous at a point a ∈ D if for any positive number ε

there exists a positive number δ depending on ε such that the condition ||~x−~a|| < δ

guarantees |f(~x) − f(~a)| < ε.

This can be written in a concise way using the ∀ (‘for all’) and ∃ (‘there exists’)

symbols:

∀ε > 0 ∃δ > 0 such that ∀~x ∈ D with ||~x− ~a|| < δ =⇒ |f(~x) − f(~a)| < ε.

If a function is continuous at every point in a set R, then we say the function is

continuous on R.
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Example 1. The constant functions f(~x) = c are continuous at any point ~a of

their domain. In fact,

|f(~x) − f(~a)| = |0| = 0 < ε

is satisfied for any ~x no matter how small ε is and no matter how far ~x from ~a is.

Example 2. Linear functions are continuous. Let us consider linear functions of 3

variables

f(x1, x2, x3) = c1x1 + c2x2 + c3x3 + d,

where c1, c2, c3, d are some constants. We want to achieve

|f(~x) − f(~a)| = |c1x1 + c2x2 + c3x3 + d− (c1a1 + c2a2 + c3a3 + d)|
= |c1(x1 − a1) + c2(x2 − a2) + c3(x3 − a3)| < ε (8)

for any small positive number ε. In a first step we have applied elementary algebra

to simplify the expression |f(~x)− f(~a)|. Now we need to find a condition of ||~x−~a||
being small that guarantees (8). Rather than trying to manipulate inequality (8)

we notice that the left hand side is a dot product

|〈c1, c2, c3〉 · 〈x1 − a1, x2 − a2, x3 − a3〉| = |~c · (~x− ~a)|

which can be estimated using the Cauchy-Schwarz inequality by

|~c · (~x− ~a)| ≤ ||~c|| ||~x− ~a||.

Now making

||~x− ~a|| < δ,

where δ is any positive number smaller than ε
||~c|| we achieve

|~c · (~x− ~a)| ≤ ||~c|| ||~x− ~a|| ≤ ||~c||δ < ||~c|| ε||~c|| = ε

as required.

The negation of the continuity statement is

∃ε > 0 such that ∀δ > 0 ∃~x with ||~x− ~a|| < δ but |f(~x− f(~a)| ≥ ε.

Notice that for the negation the symbols ∀ and ∃ swap. To prove discontinuity we

need to find one particular number ε such that, some ~x arbitrarily close to ~a such

that the distance of f(~x) to f(~a) is bigger than the chosen ε.

Below we look at two examples that are not continuous.

Example 3. f(x1, x2) =
1

x2
1 + x2

2

for ~x 6= 0 and f(~0) = 0 is not continuous at (0, 0).
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x

y

z

From the picture we see that f(~x) becomes arbitrarily big as ~x approaches ~0.

We choose ε = 1. Now we need to find ~x arbitrarily close to ~0 such that

f(~x) =
1

x2
1 + x2

2

=
1

||~x||2 ≥ 1.

In fact, any ~x with ||~x|| ≤ 1 satisfies the condition. For any δ > 0 choose ~x = (x1, 0)

with x1 = min{δ/2, 1} in order to satisfy ||~x−~0|| < δ.

Example 4.

f(x, y) =

{

0 if x ≥ 0, y ≥ 0

1 otherwise

is not continuous along the positive x-axis and positive y-axis. Here the function

x

y

z

jumps by a step of 1. Therefore choose ε = 1
2

(Any number smaller than 1 is good.)

Now of we approach ~0 from the region {x < 0} ∪ {y < 0} then f(~x) ≡ 1, so

|f(~x) − f(~0)| = |1 − 0| = 1 > ε =
1

2
.

Proving continuity from first principles is usually difficult and it is easier to apply

one of the following theorems, which are similar to one variable calculus theorems:

Theorem 1

(i) If f(~x) and g(~x) are continuous at ~a, then so is
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(a) f(~x) ± g(~x),

(b) f(~x) · g(~x)

(c)
f(~x)

g(~x)
(provided g(~a) 6= 0).

(ii) If h(~x) is continuous at (~a) and g(u) is continuous at u = h(~a), then f(~x) =

g(h(~a)), is continuous at (~a).

(iii) All the elementary functions9 are continuous on their natural domains.

The following Theorem generalises the fact, known from Math101, that continu-

ous functions on closed intervals are bounded and attain their minimum, maximum

and intermediate values. Notice that closed intervals are the only bounded, closed,

connected subsets of R.

Theorem. If D ⊂ Rn is closed and bounded and f : D → R is continuous on D

then

1. f is bounded, i.e. inf~x∈D f(~x) = m > −∞, sup~x∈D f(~x) = M <∞.

2. There are points ~a and ~b in D where the infimum m and supremum M are

attained, i.e. f(~a) = m and f(~b) = M .

3. If D is connected then any intermediate value K ∈ [m,M ] is attained, i.e.

there exists ~c ∈ D such that f(~c) = K.

As in one-variable calculus the concept of limit is related to continuity but slightly

different. If a function f(~x) is not defined at some point ~a or it is defined but we

ignore the value by some reason (e.g. if we doubt the reliability of some measure-

ment) we may ask the question: What would be the ‘right’ value for f at ~a to make

f continuous at ~a? This ‘right’ value L is called the limit of f(~x) as ~x approaches ~a

and denoted by

lim
~x→~a

f(~x) = L.

The difference to continuity is that we need to specify the limit L and that

the point ~x must remain different from ~a itself when it approaches ~a. The formal

definition is as follows.

The limit lim~x→~a f(~x) = L if L is a number such that

∀ε > 0 ∃δ > 0 such that ∀~x ∈ D with 0 6= ||~x− ~a|| < δ =⇒ |f(~x) − L| < ε.

9Elementary functions are: polynomials, trigonometric functions and their inverses, exponential

and logarithmic functions and all their sums, products, quotients and composites.
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To compute the limit of an elementary function f at a point ~a of its natural

domain is as simple as plugging ~a into f . Other limits usually require some algebraic

or geometric tricks or some known limits and the following rules:

Theorem 2 If lim
(~x)→~x0

f(~x) = L1 and lim
~x→~x0

g(~x) = L2, then

(a) lim
~x→~x0

[Cf(~x)] = CL1, where C is a constant;

(b) lim
~x→~x0

[f(~x) ± g(~x)] = L1 ± L2;

(c) lim
~x→~x0

f(~x) · g(~x) = L1L2;

(d) lim
~x→~x0

f(~x)

g(~x)
=
L1

L2
provided that L2 6= 0.

(e) If f(~x) ≤ g(~x) then L1 ≤ L2.

(f) (Squeezing principle) If L1 = L2 and h(~x) is a function such that f(~x) ≤
h(~x) ≤ g(~x). Then lim

~x→~x0

h(~x) exists and equals L1 = L2.

The proofs of these statements are similar to the one-variable proofs and a they

are a good exercise familiarise yourself with the ε− δ technique. The proofs are not

difficult, perhaps with the exception of (c) and (more so) (d).

Example 5. Find

(a) lim
(x,y)→(−1,2)

xy

x2 + y2
(b) lim

(x,y)→(−1,2)
e

xy

x2+y2

Solution:

(a) The function is a fraction of the elementary functions xy and x2+y2. Therefore

it is continuous as long as the denominator is not zero. At (−1, 2), x2 + y2 =

(−1)2 +22 = 5 6= 0. Hence the function is continuous at (−1, 2), and the limit

is simply the value of the function at (−1, 2), namely,

lim
(x,y)→(−1,2)

xy

x2 + y2
=

(−1)(2)

(−1)2 + 22
=

−2

5
.

(b) As g(u) = eu is continuous for all u and
xy

x2 + y2
is continuous at (−1, 2),

e
xy

x2+y2 = g

(

xy

x2 + y2

)

is continuous at (−1, 2). Thus

lim
(x,y)→(−1,2)

e
xy

x2+y2 = e−
2
5 .

2
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If the continuity of a function f(x, y) at a given point (x0, y0) cannot be determined

through Theorem 1 above, to find whether lim
(x,y)→(x0,y0)

f(x, y) exists is usually not

easy.

Let us note that if lim
(x,y)→(x0,y0)

f(x, y) = L, then f(x, y) must be close to L as

soon as (x, y) is close to (x0, y0). While in one variable calculus x could approach x0

only in two ways, namely from the left or from the right, in the 2-dimensional plane

(x, y) can approach (x0, y0) from infinitely many directions and even can change

the direction during the approach. In particular, it can approach (x0, y0) along any

given smooth curve C : x = x(t), y = y(t), a ≤ t ≤ b, which passes through (x0, y0),

say, at t = t0, i.e. x0 = x(t0), y0 = y(t0). This suggests that no matter what such

curve C we choose,

lim
(x,y)→(x0,y0)

(along C)

f(x, y) = lim
t→t0

f(x(t), y(t)) = L.

The limit lim
t→t0

f(x(t), y(t)) is usually much easier to obtain as it is the limit of a

function with only one variable t.

The analysis here is particularly useful in showing that lim
(x,y)→(x0,y0)

f(x, y) does

not exist. If we can find two curves C1 and C2 both passing through (x0, y0), but

with

lim
(x,y)→(x0,y0)

(along C1)

f(x, y) 6= lim
(x,y)→(x0,y0)

(along C2)

f(x, y),

then we conclude immediately that lim
(x,y)→(x0,y0)

f(x, y) does not exist, for otherwise

the limit along C1 would have been the same as that along C2.

On the other hand, if we choose many curves passing through (x0, y0) and find

that the limit along all these curves are the same, say L, then we may suspect that

lim
(x,y)→(x0,y0)

f(x, y) = L. However, checking with many curves is not a proof for the

existence of the limit. We need to provide a rigorous proof in this case. Indeed, the

limit may not exist even if the limits along many curves are the same as Example 7

below shows.

Example 6 Determining whether lim
(x,y)→(0,0)

xy

x2 + y2
exists.

Solution. The denominator is 0 at (0, 0). Therefore we cannot find the limit

through continuity. Let us check the limit along the straight line Ck : y = kx, or
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x = t, y = kt. It passes through (0, 0) at t = 0. Here k is a constant.

lim
(x,y)→(0,0)

(along Ck)

xy

x2 + y2
= lim

t→0

t(kt)

t2 + (kt)2
= lim

t→0

kt2

(1 + k2)t2

= lim
t→0

k

1 + k2
=

k

1 + k2

If we choose different values for k, we obtain different limit along Ck. This

implies that the limit lim(x,y)→(0,0)
xy

x2+y2 does not exist. 2

Example 7 Determining whether lim
(x,y)→(0,0)

xy2

x2 + y4
exists.

Solution Let us check the limit along Ck : x = t, y = kt.

We have

lim
(x,y)→(0,0)

(along Ck)

xy2

x2 + y4
= lim

t→0

t(kt)2

t2 + (kt)4

= lim
t→0

k2t

1 + k4t2
= 0

For C ′
k : x = t, y = kt2,

lim
(x,y)→(0,0)

(along C′

k
)

xy2

x2 + y4
= lim

t→0

t(kt2)2

t2 + (kt2)4

= lim
t→0

k2t3

1 + k4t8
= 0

It seems to suggest that the limit exists and is 0. However, on checking with

C : x = t, y =
√
t, we have

lim
(x,y)→(0,0)

(along C)

xy2

x2 + y4
= lim

t→0

t(
√
t)2

t2 + (
√
t)4

= lim
t→0

t2

2t2
=

1

2
.

As the limit along C is different from that along Ck, we conclude that the limit

does not exist. 2

Example 8. Show that lim
(x,y)→(0,0)

x3y

x2 + y2
= 0.

Before engaging in the proof, let us first note that we cannot just check the limit

along several (or infinitely many) curves and conclude if these limits are all 0.
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On the other hand we can reduce this limit to one-variable limit by switching to

polar coordinates

x = r cos θ

y = r sin θ

noticing that

(x, y) → (0, 0)

is equivalent to

r = ||(x, y)− (0, 0)|| =
√

x2 + y2 → 0.

Hence, the limit in Example 8. is equivalent to

lim
r→0

r4cos3 θ sin θ

r2
= lim

r→0
r2cos3 θ sin θ.

A squeezing argument shows that this limit is 0. Indeed,

0 ≤ |r2cos3 θ sin θ − 0| = r2| cos θ|3| sin θ| ≤ r2

since sin and cos vary between −1 and 1. As r → 0 both sides of the inequality tend

to 0 hence the term squeezed in the middle must converge to 0 as well.

One can guess that the limit is zero by looking at the (minimal) degrees of numer-

ator and denominator. In Example 8. it is 4 : 2, so the degree in the denominator is

bigger, which indicates a zero limit. To make this argument rigorous we prove the

following lemma.

Lemma. If g(~x) is bounded in some neighbourhood of ~a and

lim
~x→~a

f(~x) = 0

then

lim
~x→~a

f(~x)g(~x) = 0.

The proof is also based on the squeezing principle. Let M be a positive constant

such that |g(~x)| < M . Then

0 ≤ |f(~x)g(~x) − 0| = |f(~x)||g(~x)| ≤M |f(~x)|

in some neighbourhood of ~a. Now, as ~x → ~a, both sides of the inequality tend to 0,

hence the term in the middle tends to 0 as well.
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Lecture 11 Differentiability of Two Variable Func-

tions

To motivate the introduction of differentiability for two variable functions, let us

recall a few facts about one variable function. By definition, f(x) is differentiable

at x = x0 if

lim
∆x→0

f(x0 + ∆x) − f(x0)

∆x
exists.

The limit is denoted by f ′(x0), and is called the derivative of f(x) at x = x0.

Now from

f ′(x0) = lim
∆x→0

f(x0 + ∆x) − f(x0)

∆x

we see that

lim
∆x→0

f(x0 + ∆x) − f(x0) − f ′(x0)∆x

∆x
= 0

when f(x) is differentiable at x0. This implies that

f(x0 + ∆x) ≈ f(x0) + f ′(x0)∆x when ∆x is small.

More precisely, we have

f(x0 + ∆x) = f(x0) + f ′(x0)∆x+ E(∆x)

where the error term E(∆x) tends to zero faster than ∆x, i.e. using the o notation

E(∆x) = o(∆x).

Geometrically this means that, up to a small error, the function f can be approxi-

mated by a linear function, as long as we stay close to x0.

By passing to the limit for ∆x→ 0 it follows that f ′(x0)∆x → 0 and E(∆x) → 0

hence f(x0 + ∆x) → f(x0), i.e. f is continuous at x0 when it is differentiable there.

It turns out that the natural generalization of differentiability is along the line

f(x0 + ∆x) = f(x0) + A∆x+ o(∆x)

where the number A = f ′(x0).

Definition. f(x, y) is said to be differentiable at (x0, y0) if there exist numbers

A, B such that

f(x0 + ∆x, y0 + ∆y) = f(x0, y0) + A∆x+B∆y + o(||∆r||)
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where ||∆r|| =
√

∆x2 + ∆y2, or, equivalently,

lim
(∆x,∆y)→(0,0)

f(x0 + ∆x, y0 + ∆y) − f(x0, y0) − A∆x−B∆y
√

∆x2 + ∆y2
= 0.

We say f(x, y) is differentiable in a region R if it is differentiable at every point in

R. The pair of numbers (A,B) replaces the single number f ′(x0) from one variable

calculus. The differential, i.e. the linear function on ∆x

df = f ′(x0)∆x

is replaced by a linear function on two variables ∆x,∆y

df = A∆x+B∆y.

In matrix notation this becomes

df =
(

A B
)

(

∆x

∆y

)

.

Theorem 1. If f(x, y) is differentiable at (x0, y0), then f(x, y) is continuous at

(x0, y0).

Proof. We want to show

lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

i.e.,

lim
(∆x,∆y)→(0,0)

f(x0 + ∆x, y0 + ∆y) = f(x0, y0)

or

lim
(∆x,∆y)→(0,0)

[f(x0 + ∆x, y0 + ∆y) − f(x0, y0)] = 0.

Denote

g(∆x,∆y) = f(x0 + ∆x, y0 + ∆y) − f(x0, y0).

We have to show that

lim
(∆x,∆y)→(0,0)

g(∆x,∆y) = 0.

From the differentiability we have

g(∆x,∆y) == A∆x+B∆y + E(∆x,∆y),

where the error function E(∆x,∆y) = o ||∆r||, i.e.

E(∆x,∆y) = ||∆r||e(∆x,∆y),

where e(∆x,∆y) still tends to zero as (∆x,∆y) → (0, 0).

Now all the functions A∆x, B∆y, e(∆x,∆y) and ||∆r|| tend to 0 and hence

g(∆x,∆y) tends to 0. 2
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Lecture 12 Partial Derivatives

1. Partial Derivatives for Two Variable Functions

Consider a function f(x, y). If we hold y = y0, then f(x, y0) is a function of x

only, its derivative at x = x0 (when exists) is denoted by fx(x0, y0), and called

the partial derivative of f(x, y) with respect to x at the point (x0, y0).

Similarly, holding x = x0, f(x0, y) is a function of y only, and its derivative

(if exists) at y = y0 is denoted by fy(x0, y0), called the partial derivative

of f(x, y) with respect to y at the point (x0, y0). If (x0, y0) is a general

point, we usually write fx(x, y) and fy(x, y) for the partial derivatives. They

are functions of x and y.

Example 1. Find fx(1, 2) and fy(1, 2), where

f(x, y) = 2x2y + y3 + x+ 1.

Solution

f(x, 2) = 2x2(2) + (2)3 + x+ 1 = 4x2 + x+ 9

fx(x, 2) = (4x2 + x+ 9)′ = 8x+ 1

fx(1, 2) = (8x+ 1)|x=1 = 8 + 1 = 9.

or fx(x, y) = 4xy + 0 + 1 + 0 = 4xy + 1

fx(1, 2) = 4(1)(2) + 1 = 9

fy(x, y) = 2x2 + 3y2 + 0 + 0 = 2x2 + 3y2

fy(1, 2) = 2(1)2 + 3(2)2 = 14.

2

The partial derivatives have many different kinds of notations. Some of the

most often used are listed below (for z = f(x, y)).

fx(x0, y0) =
∂f

∂x

∣

∣

∣

∣

(x0,y0)

=
∂z

∂x

∣

∣

∣

∣

(x0,y0)

fx(x, y) =
∂f

∂x
=
∂z

∂x

fy(x0, y0) =
∂f

∂y

∣

∣

∣

∣

(x0,y0)

=
∂z

∂y

∣

∣

∣

∣

(x0,y0)

fy(x, y) =
∂f

∂y
=
∂z

∂y
.

Example 2. Find ∂z
∂x
, ∂z

∂y
if z = x2 sin(xy).
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Solution:

∂z

∂x
= 2x sin(xy) + x2 · cos(xy) · y (product rule and chain rule)

= 2x sin(xy) + x2y cos(xy)

∂z

∂y
= x2 cos(xy)x = x3 cos(xy).

2

It turns out that the numbers (A,B) in the definition of differentiability in

the previous lecture are exactly the partial derivatives of the function f with

respect to x and y at x0, y0. Indeed, for ∆y = 0 we get

f(x0 + ∆x, y0) = f(x0, y0) + A∆x+ o(|∆x|),

and hence A = fx(x0, y0). In a similar way we find B = fy(x0, y0). We can

rewrite the definition of differentiability as

f(x0 + ∆x, y0) = f(x0, y0) + fx(x0, y0)∆x+ fy(x0, y0)∆y + o(||∆r||).

2. Higher-Order Partial Derivatives

For a given function f(x, y), ∂f
∂x

and ∂f
∂y

are functions of x and y, each can have

partial derivatives. We define

∂2f

∂x2
=

∂

∂x

(

∂f

∂x

)

,
∂2f

∂y2
=

∂

∂y

(

∂f

∂y

)

∂2f

∂x∂y
=

∂

∂x

(

∂f

∂y

)

,
∂2f

∂y∂x
=

∂

∂y

(

∂f

∂x

)

.

These are called the second-order partial derivatives. Moreover, ∂2f
∂x2 and

∂2f
∂y2 are called the pure second-order partial derivatives as they are ob-

tained by differentiation with respect to the same variable twice. ∂2f
∂x∂y

and
∂2f
∂y∂x

are called the mixed second order partial derivatives.

In this context, ∂f
∂x

and ∂f
∂y

are called the first-order partial derivatives.

We define third-order partial derivatives as the partial derivatives of the second-

order partial derivatives, and so on. For example, we have

∂3f

∂x3
=

∂

∂x

(

∂2f

∂x2

)

,
∂3f

∂y2∂x
=

∂

∂y

(

∂2f

∂y∂x

)

,

∂4f

∂x4
=

∂

∂x

(

∂3f

∂x3

)

,
∂4f

∂x∂2y∂x
=

∂

∂x

(

∂3f

∂y2∂x

)

.
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Higher-order partial derivatives also have different notations. For example,

∂2f

∂x2
= fxx,

∂2f

∂x∂y
= fyx, fxxyy =

∂4f

∂y∂y∂x∂x
=

∂4f

∂y2∂x2
.

Note that while ∂2f
∂x∂y

= ∂
∂x

(

∂f
∂y

)

, we have fyx = (fy)x. That is why we have

∂2f
∂x∂y

= fyx (note the difference in the order for x and y in the notation).

Example 3. Let f(x, y) = ex sin y + ln x. Find fxyx.

Solution

fx =
∂

∂x
(ex sin y + ln x) = ex sin y +

1

x
.

fxy = (fx)y =
∂

∂y
(fx) =

∂

∂y
(ex sin y +

1

x
) = ex cos y

fxyx = (fxy)x =
∂

∂x
(fxy) =

∂

∂x
(ex cos y) = ex cos y.

2.

3. Partial Derivatives of Functions of More Than Two Variables

For functions of more than two variables, the partial derivatives and higher-

order partial derivatives are defined analogously.

For example,

∂f
∂x

= fx(x, y, z) is calculated by holding y and z fixed.

∂f
∂xi

= fxi
(x1, . . . , xn) is calculated by holding all the variables except xi fixed.

Example 4. Let f(x, y, z) = x2yz + yz + x. Find fxyy.

Solution:

fx = 2xyz + 1, fxy =
∂

∂y
(2xyz + 1) = 2xz,

fxyy =
∂

∂y
(2xz) = 0.

2

Example 5. Find ∂3z
∂θ∂φ∂ρ

where z = ρ2 cosφ sin θ

Solution:

∂z

∂ρ
= 2ρ cosφ sin θ

∂2z

∂φ∂ρ
=

∂

∂φ
(2ρ cosφ sin θ) = −2ρ sin φ sin θ

∂3z

∂θ∂φ∂ρ
=

∂

∂θ
(−2ρ sinφ sin θ) = −2ρ sinφ cos θ
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2

Example 6. Find ∂
∂x1

(

√

x2
1 + x2

2 + · · ·+ x2
n

)

and ∂
∂xi

(

√

x2
1 + x2

2 + · · ·+ x2
n

)

.

Solution

∂

∂x1

(

√

x2
1 + x2

2 + · · · + x2
n

)

=
1

2
(x2

1 + x2
2 + · · ·+ x2

n)−
1
2 · 2x1 (chain rule)

=
x1

√

x2
1 + x2

2 + · · ·+ x2
n

∂

∂xi

(

√

x2
1 + x2

2 + · · · + x2
n

)

=
1

2
(x2

1 + x2
2 + · · ·+ x2

n)−
1
2 2xi (chain rule)

=
xi

√

x2
1 + x2

2 + . . . x2
n

2

The following theorem shows that we can use information on the partial deriva-

tives fx(x, y) and fy(x, y) to determine the differentiability of f(x, y).

Theorem 1. If fx(x, y), fy(x, y) exist for (x, y) in some circular region centered at

(x0, y0), and fx(x, y), fy(x, y) are continuous at (x0, y0), then f(x, y) is differentiable

at (x0, y0).

Proof. We want to show

lim
(∆x,∆y)→(0,0)

f(x0 + ∆x, y0 + ∆y) − f(x0, y0) − fx(x0, y0)∆x− fy(x0, y0)∆y
√

∆x2 + ∆y2
= 0

Denoting the fraction above by I, we want to find a function g(∆x,∆y) such that

|I| ≤ g(∆x,∆y) and lim
(∆x,∆y)→(0,0)

g(∆x,∆y) = 0

By the squeezing method, the existence of such a function g implies lim
(∆x,∆y)→(0,0)

I = 0,

as required.

To use the given information about the partial derivatives, we write

f(x0 + ∆x, y0 + ∆y) − f(x0, y0)

= [f(x0 + ∆x, y0 + ∆y) − f(x0,+∆x, y0)] + [f(x0 + ∆x, y0) − f(x0, y0)],

and use the mean-value theorem to obtain

f(x0 + ∆x, y0 + ∆y) − f(x0 + ∆x, y0) = fy(x0 + ∆x, y0 + θ1∆y) · ∆y, 0 < θ1 < 1

f(x0 + ∆x, y0) − f(x0, y0) = fx(x0 + θ2∆x, y0)∆x, 0 < θ2 < 1.
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Thus

f(x0 + ∆x, y0 + ∆y) − f(x0, y0)

= fy(x0 + ∆x, y0 + θ1∆y)∆y + fx(x0 + θ2∆x, y0)∆x.

Substituting this into the expression of I, we obtain

I =
[fx(x0 + θ2∆x, y0) − fx(x0, y0)]∆x+ [fy(x0 + ∆x, y0 + θ1∆y) − fy(x0, y0)]∆y

√

∆x2 + ∆y2

= [fx(x0 + θ2∆x, y0) − fx(x0, y0)]
∆x

√

∆x2 + ∆y2

+[fy(x0 + ∆x, y0 + θ1∆y) − fy(x0, y0)]
∆y

√

∆x2 + ∆y2

Since

∣

∣

∣

∣

∣

∆x
√

∆x2 + ∆y2

∣

∣

∣

∣

∣

=
|∆x|

√

∆x2 + ∆y2
≤ |∆x|√

∆x2
=

|∆x|
|∆x| = 1, and similarly

∣

∣

∣

∣

∣

∆y
√

∆x2 + ∆y2

∣

∣

∣

∣

∣

≤ 1,

we obtain

|I| ≤ |fx(x0 + θ2∆x, y0) − fx(x0, y0)|
∣

∣

∣

∣

∣

∆x
√

∆x2 + ∆y2

∣

∣

∣

∣

∣

+ |fy(x0 + ∆x, y0 + θ1∆y) − fy(x0, y0)|
∣

∣

∣

∣

∣

∆y
√

∆x2 + ∆y2

∣

∣

∣

∣

∣

≤ |fx(x0 + θ2∆x, y0) − fx(x0, y0)| + |fy(x0 + ∆x, y0 + θ1∆y) − fy(x0, y0)| .

Let us choose g(∆x,∆y) to be the right hand side of this last inequality. Since

fx(x, y) and fy(x, y) are continuous at (x0, y0), as (x, y) → (x0, y0),

fx(x, y) − fx(x0, y0) → 0, fy(x, y) − fy(x0, y0) → 0.

But from 0 < θ1 < 1, 0 < θ2 < 1 we know that as (∆x,∆y) → (0, 0),

(x0 + θ2∆x, y0) → (x0, y0), (x0 + ∆x, y0 + θ1∆y) → (x0, y0).

Therefore, as (∆x,∆y) → (0, 0),

|fx(x0 + θ2∆x, y0) − fx(x0, y0)| → 0

|fy(x0 + ∆x, y0 + θ1∆y) − fy(x0, y0)| → 0

It follows that

lim
(∆x,∆y)→(0,0)

g(∆x,∆y) = 0.
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As we already have, by the definition of g(∆x,∆y),

|I| ≤ g(∆x,∆y),

the squeezing method implies

lim
(∆x,∆y)→(0,0)

I = 0.

This finishes the proof. 2

In addition to guaranteeing differentiability and continuity of f(x, y), continuity

of the partial derivatives also ensures that the mixed second-order partial derivatives

of f are equal. This is the content of the following theorem, whose proof we omit.

Theorem 2. If fx(x, y), fy(x, y), fxy(x, y) and fyx(x, y) are continuous on an open

set, then fxy(x, y) = fyx(x, y) at each point of the set.

For most of the functions we meet, their partial derivatives are continuous.

Therefore the mixed partial derivatives are equal. Applying Theorem 3, say to

fx, we can deduce fxxy = fxyx, etc, provided the continuity conditions are met.

Example 2. For f(x, y) = ex(x2+xy), check that fxy = fyx and fxyy = fyyx = fyxy.

Solution: fx = ex(x2 + xy) + ex(2x+ y) = ex(x2 + 2x+ xy + y)

fxy = ex(x+ 1)

fxyy = 0

fy = exx

fyy = 0

fyyx = 0

fyx =
∂

∂x
(exx) = exx+ ex = ex(x+ 1)

fyxy =
∂

∂y
(exx+ ex) = 0.

Hence

fxyy = fyyx = fyxy = 0,

fxy = fyx = ex(x+ 1).

2.
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Lecture 13 The Chain Rules

Recall that in the one variable function case, if y = f(x), x = x(t), then the

derivative of the composite function y = f(x(t)) can be calculated by te chain rule:

dy

dt
= f ′(x(t))x′(t), or

dy

dt
=
dy

dx
· dx
dt

For two variable functions, there are several situations where the chain rule is

needed. The first situation is described in the following theorem.

Theorem 1 (Chain Rule). If x = x(t), y = y(t) are differentiable at t and z =

f(x, y) is differentiable at (x, y) = (x(t), y(t)), then z = f(x(t), y(t)) as a function

of the single variable t is differentiable at t, and

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y
· dy
dt
, i.e

d

dt
f(x(t), y(t)) = fx(x(t), y(t))x

′(t) + fy(x(t), y(t)y
′(t)

Proof. Since x(t) and y(t) are differentiable at t, by definition,

lim
∆t−→0

∆x

∆t
= lim

∆t−→0

x(t+ ∆t) − x(t)

∆t
= x′(t),

lim
∆t−→0

∆y

∆t
= lim

∆t−→0

y(t+ ∆t) − y(t)

∆t
= y′(t).

The existence of the above two limits implies that

∆x −→ 0 and ∆y −→ 0 as ∆t −→ 0.

Let us denote, for convenience of later use,

ε =
∆z − fx∆x− fy∆y
√

∆x2 + ∆y2
(9)

=
f(x+ ∆x, y + ∆y) − f(x, y) − fx(x, y)∆x− fy(x, y)∆y

√

∆x2 + ∆y2

where we suppose x = x(t), y = y(t),∆x = x(t+ ∆t) − x(t),∆y = y(t+ ∆t) − y(t).

Since f(x, y) is differentiable at (x(t), y(t)), and we know already that ∆x −→
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0,∆y −→ 0 as ∆t −→ 0, we obtain from the definition of differentiability that

ε −→ 0 as ∆t −→ 0.

We can rewrite equation (1) as

∆z = fx∆x+ fy∆y + ε ·
√

∆x2 + ∆y2,

from which we get

∆z

∆t
= fx

∆x

∆t
+ fy

∆y

∆t
+ ε

√

∆x2 + ∆y2

∆t

= fx(x(t), y(t))
∆x

∆t
+ fy(x(t), y(t))

∆y

∆t
± ε

√

(

∆x

∆t

)2

+

(

∆y

∆t

)2

where, before the last term, we take positive sign when ∆t > 0 and take negative

sign when ∆t < 0.

Now we take the limit ∆t −→ 0 in the above identity, recalling
∆x

∆t
−→ x′(t),

∆y

∆t
−→ y′(t) and ε −→ 0, and obtain

lim
∆t−→

∆z

∆t
= fx(x(t), y(t))x

′(t) + fy(x(t), y(t))y
′(t).

That is to say dz
dt

exists and

dz

dt
= fx(x(t), y(t))x

′(t) + fy(x(t), y(t))y
′(t).

The proof is complete. 2

Example 1. Use the chain rule to find dz
dt

where z = x2 + y2 + xy, x = t2, y = t.

Solution
∂z

∂x
= 2x+ y,

∂z

∂y
= 2y + x,

dx

dt
= 2t,

dy

dt
= 1.

By the chain rule,

dz

dt
=

∂z

∂x
· dx
dt

+
∂z

∂y

dy

dt
= (2x+ y)(2t) + (2y + x)(1)

= (2t2 + t)(2t) + (2t+ t2)(1)

= 4t3 + 2t2 + 2t+ t2

= 4t3 + 3t2 + 2t.

2

Note that we always have another way to find the derivative, that is, we can

substitute x = t2, y = t into the expression z = x2 + y2 + xy to obtain

z = (t2)2 + (t)2 + (t2) + (t2)(t) = t4 + t2 + t3
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and then differentiate
dz

dt
=

d

dt
(t4 + t3 + t2) = 4t3 + 3t2 + 2t.

However, if the finctions are complicated, it is usually better to use the chain

rule.

Another case where the chain rule arises naturally is described by the following

theorem.

Theorem 2 (Chain Rule) If x = x(u, v), y = y(u, v) have first order partial

derivatives at (u, v) and z = f(x, y) is differentiable at (x(u, v), y(u, v)), then z =

f(x(u, v), y(u, v)) has first order partial derivatives at (u, v), and

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
,
∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v

The proof of Theorem 2 is similar to that of Theorem 1, because, for example,

when you calculate ∂z
∂u

, v is held as a constant. The details are left as an exercise

(please have a try!).

Example 2 Given z = sin(xy), x = 2u+ v, y = uv. Find

∂z

∂u
and

∂z

∂v
.

Solution
∂z

∂x
= y cos(xy),

∂z

∂y
= x cos(xy),

∂x

∂u
= 2,

∂x

∂v
= 1,

∂y

∂u
= v,

∂y

∂v
= u.

By the chain rule,

∂z

∂u
=

∂z

∂x

∂x

∂u
+
∂z

∂y
· ∂y
∂u

= (y cos(xy))(2) + (x cos(xy))(v)

= 2uv cos((2u+ v)(uv)) + v(2u+ v) cos((2u+ v)(uv))

= 2uv cos(2u2v + uv2) + (2uv + v2) cos(2u2v + uv2)

= (4uv + v2) cos(2u2v + uv2)

∂z

∂v
=

∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v

= (y cos(xy))(1) + (x cos(xy)) · u
= uv cos(2u2v + uv2) + u(2u+ v) cos(2u2v + uv2)

= (2u2 + 2uv) cos(2u2v + uv2).
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2

Please try to substitute x = 2u + v, y = uv first and then differentiate. You

should arrive at the same solutions.
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Lecture 14 Tangent Planes and Total Differentials

From the last lecture, we know that if z = f(x, y), x = x(t) and y = y(t), then by

the chain rule

d

dt
f(x(t), y(t)) = fx(x(t), y(t))x

′(t) + fy(x(t), y(t))y
′(t).

For the case w = f(x, y, z), x = x(t), y = y(t), z = z(t), there is a natural

generalization:

d

dt
f(x(t), y(t), z(t)) = fx(x, y, z)x

′(t) + fy(x, y, z)y
′(t) + fz(x, y, z)z

′(t).

This formula (a chain rule for three variable functions) will be useful below.

Let us consider a surface determined by the equation F (x, y, z) = 0. Let

P0(x0, y0, z0) be a point on the surface (and hence F (x0, y0, z0) = 0). If the

tangent lines at P0 to all smooth

curves that pass through P0 and lie

on the surface are contained in a

common plane, then this plane is

called the tangent plane to

the surface at P0. The line through

P0 parallel to the normal vector

of the tangent plane is called the

normal line to the surface at P0.

P0

Normal Line

Tangent Plane

We now set to find an equation of the tangent plane at a given point P0(x0, y0, z0)

on a given surface F (x, y, z) = 0. As a point P0 on the plane is already given, we

need only to find a normal vector ~n.

To this end, we let x = x(t), y = y(t), z = z(t) be the parametric equation of an

arbitrary curve lying on F (x, y, z) = 0, passing through (x0, y0, z0) at t = t0. This

implies that

F (x(t), y(t), z(t)) ≡ 0 for all t, x(t0) = x0, y(t0) = y0, z(t0) = z0.

Recall that ~r(t0) = 〈x′(t0), y′(t0), z′(t0)〉 is a tangent vector of the curve ~r = 〈x(t), y(t), z(t)〉
at P0. Thus the normal vector ~n should be perpendicular to ~r′(t0), i.e. ~n ·~r′(t0) = 0.

On the other hand, if we differentiate the identity

F (x(t), y(t), z(t)) = 0,
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and use the chain rule, we obtain

d

dt
F (x(t), y(t), z(t) = 0, i.e.

Fx(x(t), y(t), z(t))x
′(t)+Fy(. . .)y

′(t)+Fz(. . .)z
′(t) = 0, for all t. Take t = t0, we get

F (x0, y0, z0)x
′(t0) + Fy(x0, y0, z0)y

′(t0) + Fz(x0, y0, z0)z
′(t0) = 0.

That is to say, the vector 〈Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)〉 and

~r ′(t0) = 〈x′(t0), y′(t0), z′(t0)〉 are perpendicular. Therefore, we can take

~n = 〈Fx(x0, y0, z0), Fy(x0, y0, zo), Fz(x0, y0, z0)〉.

We can now write down the equation of the tangent plane:

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0

The equation of the normal line is

x− x0 = Fx(x0, y0, z0)t, y − y0 = Fy(x0, y0, z0)t, z − z0 = Fz(x0, y0, z0)t

It is preferable to give a surface as a graph over the xy-plane (or xz- or yz-plane)

by its explicit equation z = f(x, y). To find the explicit equation one has to ‘solve’

the implicit equation F (x, y, z) = 0 for z. If F (x, y, z) = ax+ by+ cz+ d is a linear

equation we readily find

z = −a
c
x− b

c
y − d

c

if c 6= 0. If c = 0 we cannot solve this equation for z. For non-linear F (x, y, z)

it might be very difficult or even impossible to solve this equation by algebraic

manipulations. The so-called ‘implicit function’ theorem tells us that a solution

exists, even if we cannot write down a formula:

Theorem 1. If F (x, y, z) is a function which has continuous derivatives in some

neighbourhood of (x0, y0, z0), F (x0, y0, z0) = 0 and Fz(x0, y0, z0) 6= 0. Then there

exists a function f(x, y) defined in a neighbourhood of (x0, y0) such that (in some

neighbourhood of (x0, y0, z0)) the condition F (x, y, z) = 0 is equivalent to z =

f(x, y). The function f has continuous partial derivatives

fx = −Fx

Fz

, fy = −Fy

Fz

.
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We do not give a proof for this but we point out that the proof is based on the

fact that

F (x, y, z) ≈ F (x0, y0, z0)+Fx(x0, y0, z0)(x−x0)+Fy(x0, y0, z0)(y−y0)+Fz(x0, y0, z0)(z−z0).
Taking into account F (x, y, z) = F (x0, y0, z0) = 0 we get

z − z0 ≈ −Fx(x0, y0, z0)

Fz(x0, y0, z0)
(x− x0) + −Fy(x0, y0, z0)

Fz(x0, y0, z0)
(x− x0)

from which we can also guess the formula for the partial derivatives of f . To make

this argument rigorous one would need to give a precise meaning to ‘≈’.

In practice this result is used to find approximate solution, usually by iterative

methods such as Newton’s method. This topic will be discussed in Amth250.

Example. Let F (x, y, z) = x + y + z cos z. Then F (0, 0, 0) = 0 and Fz =

cos z + z sin z, hence Fz(0, 0, 0) = 1 6= 0. According to the theorem then the is a

function z = f(x, y) that solves the implicit equation F (x, y, z) = 0. We are not able

to give an algebraic formula for f but we now that it exists and equals approximately

f(x, y) ≈ −x− y,

since f(0, 0) = z0 = 0, fx(0, 0) = −Fx(0, 0, 0)

Fz(0, 0, 0)
= −1, fy(0, 0) = −Fy(0, 0, 0)

Fz(0, 0, 0)
= −1.

Remark. If Fz(x0, y0, z0) = 0 we cannot solve the equation with respect to z

(similar to ax + by + cz = 0 when c = 0), but if Fx(x0, y0, z0) 6= 0 we solve with

respect to x, i.e. find a function g(y, z) such that F (x, y, z) = 0 is locally equivalent

to x = g(y, z). Or, if Fy(x0, y0, z0) 6= 0 then there is a function h(x, z) such that

F (x, y, z) = 0 is locally equivalent to y = h(x, z).

If the surface is already given as a graph z = f(x, y), we can always rewrite it in

the form F (x, y, z) = 0 by simply letting

F (x, y, z) = f(x, y) − z.

We have Fx(x0, y0, z0) = fx(x0, y0), Fy(x0, y0, z0) = fy(x0, y0) and Fz(x0, y0, z0) =

−1. Hence, on substituting into the above equations for tangent plane and normal

line, we obtain

(i) Tangent plane at (x0, y0, z0) for y = f(x0, y0):

fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) − (z − z0) = 0

(ii) Normal line:

x− x0 = fx(x0, y0)t, y − y0 = fy(x0, y0)t, z − z0 = −t
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The above equation for the tangent plane can be written in the form

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0), or

z = z0 + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Geometrically, we know the tangent plane is the closest plane to the surface near

P0. Analytically, this is to say the linear function (in x and y)

z0 + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

is the best linear approximation of the (in general nonlinear) function f(x, y) near

(x0, y0). If we denote x− x0 by ∆x, y − y0 by ∆y and z − z0 by ∆z, then the best

linear approximation for ∆z is

∆z ≈ fx(x0, y0)∆x+ fy(x0, y0)∆y.

Write ∆x = dx,∆y = dy. Then the quantity

dz = fx(x0, y0)dx+ fy(x0, y0)dy

is called the total differential of f(x, y) at (x0, y0).

Our above discussion shows that when dx = ∆x and dy = ∆y are small,

(i) dz is the best linear approximation of ∆z,

(ii) z0 + dz is the best linear approximation of f(x0 + dx, y0 + dy)

Example 1. Find an equation of the tangent plane to the surface z = x2 + y2 at

(1, 1, 2).

Solution f(x, y) = x2 + y2. At (x, y) = (1, 1),

fx(1, 1) = 2x|(1,1) = 2, fy(1, 1) = 2y|(1,1) = 2

Therefore, the equation is

2(x− 1) + 2(y − 1) − (z − 2) = 0.

i.e. 2x+ 2y − z − 2 = 0. 2

Example 2 Use total differential to approximate f(1.01, 1.99) where f(x, y) = x3y4.
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Solution f(1.01, 1.99) = f(1 + 0.01, 2 − 0.01)

≈ f(1, 2) + fx(1, 2)(0.01) + fy(1, 2)(−0.01)

= (1)3(2)4 + 3(1)2(2)4(0.01) + 4(1)3(2)3(−0.01)

= 16 + 0.48 − 0.32

= 16.16
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Lecture 15 Directional Derivatives and Gradients

Let us recall that if C : x = x(t), y = y(t) is a smooth curve passing through (x0, y0)

at t = t0, i.e., x(t0) = x0, y = (t0) = y0, then the limit of f(x, y) at (x0, y0) along C

is

lim
(x, y) → (x0, y0)

(along C)

f(x, y) = lim
t→t0

f(x(t), y(t))

Let ~u = 〈u1, u2〉 be a given unit vector. Then the straight line l : x = x0 + u1t,

y = y0 + u2t passes through (x0, y0) at t = 0 and has positive direction ~u. Of course

we can calculate the limit of f(x, y) at (x0, y0) along l. Moreover, we can also find

the derivative of f(x, y) along l as follows.

Along l, f(x, y) = f(x0 + u1t, y0 + u2t). Therefore,

d

dt
f(x0 + u1t, y0 + u2t) = fx(x0 + u1t, y0 + u2t)u1 + fy(x0 + u1t, y0 + u2t)u2.

At t = 0 this derivative is fx(x0, y0)u1 +fy(x0, y0)u2, which is called the directional

derivative of f(x, y) at (x0, y0) in the direction of ~u, and is denoted by D~uf(x0, y0)

Remark: We always require ~u to be a unit vector here.

Example 1 Find the directional derivative of f(x, y) = exy at (1, 1) in the direction

of ~a = 3~i+ 4~j.

Solution Since ~a is not a unit vector, we need firstly to normalise it:

~u =
~a

||~a|| =
3~i+ 4~j√
32 + 42

=
3

5
~i+

4

5
~j

The directional derivative is

D~uf(1, 1) =

(

fx
3

5
+ fy

4

5

)

∣

∣

(1,1)

=

(

yexy 3

5
+ xexy 4

5

)

∣

∣

(1,1)

=
7

5
e.
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If we introduce the vector ~u0 = fx(x0, y0)~i+ fy(x0, y0)~j, then

D~uf(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2

= ~u0 · ~u (by definition of dot product)

= ||~u0||||~u|| cos θ

= ||~u0|| cos θ (since ~u is a unit vector)

where θ is the angle between ~u and ~u0. It follows, as −1 ≤ cos θ ≤ 1,

−||~u0|| ≤ D~uf(x0, y0) ≤ ||~u0||

and D~uf(x0, y0) takes the maximum ||~u0|| if θ = 0, i.e. ~u is in the direction of ~u0; it

takes the minimum −||~u0|| if θ = π, i.e. ~u is in the opposite direction of ~u0.

Recall that the derivative measures the rate of change. Therefore the above

observation can be interpreted as the following:

The function f(x, y) increases most rapidly near (x0, y0) in the direction of ~u0 =

fx(x0, y0)~i + fy(x0, y0)~j, and it decreases most rapidly near (x0, y0) in the opposite

direction of ~u0.

We call the vector fx(x0, y0)~i + fy(x0, y0)~j the gradient of f(x, y) at (x0, y0),

and denote it by ▽f(x0, y0). Thus

▽f(x0, y0) = fx(x0, y0)~i+ fy(x0, y0)~j

D~uf(x0, y0) = ▽f(x0, y0) · ~u

Denote k0 = f(x0, y0). Then f(x, y) = k0 gives a curve, known as the level curve

passing through (x0, y0). Clearly the value of f(x, y) does not change along this

level curve (the value of f(x, y) is fixed at k0 there). We have already known that

the value of f(x, y) changes most rapidly near (x0, y0) in the direction of ▽f(x0, y0).

Let us show in the following that ▽f(x0, y0) is in fact perpendicular to the level

curve at (x0, y0), i.e. ▽f(x0, y0) is perpendicular to the tangent line of this level

curve at (x0, y0).

Suppose x = x(t), y = y(t) with x(t0) = x0, y(t0) = y0 is a parametric equation

for the level curve f(x, y) = k0. Then k0 = f(x(t), y(t)) for all t.

We differentiate this identity and obtain

0 =
d

dt
f(x(t), y(t)) = fx(x(t), y(t))x

′(t) + fy(x(t), y(t)y
′(t) for all t.
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Take t = t0. It gives

0 = fx(x0, y0)x
′(t0) + fy(x0, y0)y

′(t0)

= ▽f(x0, y0) · 〈x′(t0), y′(t0)〉.

But 〈x′(t0), y′(t0)〉 is a vector parallel to the tangent line of the level curve at

(x0, y0). Hence the above identity implies that ▽f(x0, y0) is perpendicular to the

tangent line of the level curve at (x0, y0).

To summarise, we have proved the following theorem.

Theorem 1

(1) D~uf(x0, y0) takes the largest value ||▽f(x0, y0)|| among all possible directions

when ~u is in the same direction of ▽f(x0, y0); it takes the smallest value

−|| ▽ f(x0, y0)|| when ~u is in the opposite direction of ▽f(x0, y0).

(2) ▽f(x0, y0) is perpendicular, at (x0, y0), to the level curve of f(x, y) passing

through (x0, y0).

Example 2 Find the equation of the level curve of the function f(x, y) = x3 + y3

passing through (1, 2) and then find the equation of the normal line of this level

curve at (1, 2).

Solution. f(1, 2) = (1)3 + (2)3 = 9. Therefore the equation of the level curve is

x3 + y3 = 9.

By theorem 1, we know ▽f(1, 2) = (3x2~i+3y2~j)|(1,2) = 3~i+12~j is perpendicular

to the level curve at (1,2 ) and hence is parallel to the normal line. Therefore, the

normal line has equation

x = 1 + 3t, y = 2 + 12t

or
x− 1

3
=
y − 2

12
or

4x− y − 2 = 0

2
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Lecture 16 Functions of Three and n Variables

All the definitions and results for two variable functions developed so far can be

extended to functions of three or n variables.

In the following, we list some of the most important definitions and properties

for two and three variable functions:

(a) f(x, y) is differentiable at (x0, y0) if fx(x0, y0), fy(x0, y0) exist and

lim
(∆x,∆y)−→(0,0)

f(x0 + ∆x, y0 + ∆y) − f(x0, y0) − fx(x0, y0)∆x− fy(x0, y0)∆y)
√

∆x2 + ∆y2
= 0

(a′) f(x, y, z) is differentiable at (x0, y0, z0) if fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)

exist and

lim
(∆x,∆y,∆z)−→(0,0,0)

∆f − fx(x0, y0, z0)∆x− fy(x0, y0, z0)∆y − fz(x0, y0, z0)∆z
√

∆x2 + ∆y2 + ∆z2
= 0

where ∆f = f(x0 + ∆x, y0 + ∆y, z0 + ∆z) − f(x0, y0, z0).

(b) If fx(x, y), fy(x, y) exist for (x, y) near (x0, y0) and they are continuous at

(x0, y0) then f(x, y) is differentiable at (x0, y0).

(b′) If fx(x, y, z), fy(x, y, z), fz(x, y, z) exist for (x, y, z) near (x0, y0, z0) and they

are continuous at (x0, y0, z0), then f(x, y, z) is differentiable at (x0, y0, z0).

(c) If z = f(x, y), x = x(t), y = y(t), then

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

(c′) If w = f(x, y, z), x = x(t), y = y(t), z = z(t), then

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

(d) If ~u = u1
~i+ u2

~j and ||~u|| = 1, then

D~uf(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2

= ∇f(x0, y0) · ~u,

where ∇f(x0, y0) = fx(x0, y0)~i + fy(x0, y0)~j is the gradient of f(x, y) at

(x0, y0).
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(d′) If ~u = u1
~i+ u2

~j + u3
~k and ||~u|| = 1, then

D~uf(x0, y0, z0) = fx(x0, y0, z0)u1 + fy(x0, y0z0)u2 + fz(x0, y0, z0)u3

= ∇f(x0, y0, z0) · ~u,

where ∇f(x0, y0, z0) = fx(x0, y0, z0)~i + fy(x0, y0, z0)~j + fz(x0, y0, z0)~k is the

gradient of f(x, y, z) at (x0, y0, z0).

(e) ∇f(x0, y0) is the direction when the directional derivative of f(x, y) at (x0, y0)

takes maximum value among all the directions.

(e′) ∇f(x0, y0, z0) is the direction when the directional derivative of f(x, y, z) at

(x0, y0, z0) takes maximum value among all the directions.

(f) ∇f(x0, y0) is perpendicular to the level curve of f(x, y) through (x0, y0).

(f′) ∇f(x0, y0, z0) is perpendicular to the level surface of f(x, y, z) through (x0, y0, z0).

(g) dz = fx(x0, y0)dx + fy(x0, y0)dy is called the total differential of f(x, y) at

(x0, y0), and dz is the best linear approximation of ∆z when dx and dy are

small.

(g′) dw = fx(w0, y0, z0)dx + fy(x0, y0, z0)dy + fz(x0, y0, z0) is called the total dif-

ferential of f(x, y, z) at (x0, y0, z0), and dw is the best linear approximation

of ∆w when dx, dy and dz are small.

The generalization to n–variable functions is similar. For example, the directional

derivative is given by

D~uf(x0
1, . . . , x

0
n) = fx1(x

0
1, . . . , x

0
n)u1 + . . .+ fxn

(x0
1, . . . , x

0
n)un

= ∇f(x0
1, . . . , x

0
n) · ~u

∇f(x0
1, . . . , x

0
n) = fx1(x

0
1, . . . , x

0
n)~e1 + . . . + fxn

(x0
1, . . . , x

0
n)~en is the gradient of

f(x1, . . . , xn) at (x0
1, . . . , x

0
n), where

~e1 = 〈1, 0, . . . , 0〉, ~e2 = 〈0, 1, 0, . . . , 0〉, . . . , ~en = 〈0, . . . , 0, 1〉.

dw = fx1(x
0
1, . . . , x

0
n)dx1 + . . . + fxn

(x0
1, . . . , x

0
n)dxn is the total differential of

f(x1, . . . , , xn) at (x0
1, . . . , x

0
n).

For functions of three or more variables, there are more versions of the chain

rule than for two variable functions. It is impossible to give a complete list of such

chain rules. However, the so called Tree Diagrams For the Chain Rules are

very useful and convenient. Let us see how these diagrams are used through several

examples.

Example 1
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(a) The chain rule
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

can be explained by the following tree diagram:

z

x y

dy/dt

tt

dx/dt

xz/ z/ y

(b) The chain rule

∂z

∂u
=

∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
.

∂z

∂v
=

∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v

can be expressed by the tree

diagram on the right.

z

x y

u v u v

ux/

xz/ z/ y

x/ v uy/ y/ v

Example 2 Let w = f(x, y, z), x = x(r, s), y = y(r, s), z = z(r, s). Use a tree

diagram to find the corresponding chain rule.

Solution. The tree diagram should look like the following:

r s

w

x z

y

r rs s

w/ y

w/ zxw/

x/ r x/ s

ry/ y/ s

rz/ z/ s

The chain rules are

∂w

∂r
=

∂w

∂x

∂x

∂r
+
∂w

∂y

∂y

∂r
+
∂w

∂z

∂z

∂r
∂w

∂s
=

∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
+
∂w

∂z

∂z

∂s

2

Example 3. Let w = f(x, y, z), z = z(x, y). Find ∂
∂x
f(x, y, z(x, y)).



89

Solution. The tree diagram is the following

w

x

y

z

x y

xw/

yw/

w/ z

xz/ z/ y

The chain rule is

∂

∂x
f(x, y, z(x, y)) =

∂w

∂x
+
∂w

∂z

∂z

∂x
.

2

The chain rules are perhaps the most difficult part in the calculation of partial

derivatives. You should have plenty of practice with them in order to master this

skill.
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Lecture 17 Multivariable Taylor formula

Taylor’s formula tells us that a function that has n+ 1 continuous derivatives at x0

can be approximated by a polynomial of degree n so that the error term En tends

to 0 faster than (x − x0)
n. This can be generalised to multivariable functions. For

simplicity we start with the second order expansion of a function of two variables

f(x, y) with reference point (0, 0). We have

f(x, y) = f(0, 0)+fx(0, 0)x+fy(0, 0)y+
1

2
(fxx(0, 0)x2+2fxy(0, 0)xy+fyyy

2)+E2(x, y).

The error term E2 = o(x2 + y2) = o(||〈x, y〉||).

This follows from the one-variable Maclaurin formula for the auxiliary function

g(t) = f(tx, ty) : [0, 1] → R

g(t) = g(0) + g′(0)t+
1

2
g′′(0)t2 +

1

6
g′′′(θ)t3 = g(0) + g′(0)t+

1

2
g′′(0)t2 + E2 (10)

where θ is some unknown number between 0 and 1. Now

g(0) =f(0, 0)

g′(0) =
∂f

∂x
(0, 0)

d

dt
(tx)|t=0 +

∂f

∂y
(0, 0)

d

dt
(ty)|t=0 = fy(0)y

g′′(0) =
∂2f

∂x2
(0, 0)(

d

dt
(tx)|t=0)

2 +
∂2f

∂x∂y
(0, 0)

d

dt
(tx)|t=0

d

dt
(ty)|t=0 +

∂f

∂x
(0, 0)

d2

dt2
(tx)|t=0

+
∂2f

∂y∂x
(0, 0)

d

dt
(ty)|t=0

d

dt
(tx)|t=0 +

∂2f

∂y2
(0, 0)(

d

dt
(ty)|t=0)

2 +
∂f

∂y
(0, 0)

d2

dt2
(ty)|t=0

=fxx(0, 0)x2 + fxy(0, 0)xy + fyx(0, 0)yx+ fyy(0, 0)y2

=fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y2.

A similar computation shows that g′′′(θ) is polynomial of pure 3rd order in x, y

whose coefficients are third order partial derivatives of f , which are bounded by a

constant M . Hence

|E2| ≤M ||〈x, y〉||3 = o(||〈x, y〉||2).
From equation (10) with t = 1 we get now the desired formula

f(x, y) = f(0, 0)+fx(0, 0)x+fy(0, 0)y+
1

2
(fxx(0, 0)x2+2fxy(0, 0)xy+fyy(0, 0)y2)+o(||〈x, y〉||2).

Example. Find the second order Maclaurin formula f(x, y) = ln(1 + x2 + y2).

This can be done by substituting t = x2+y2 into the one-variable Maclaurin formula

ln(1 + t) = t− 1
2
t2 + o(t2). Since 1

2
t2 = 1

2
(x2 + y2)2 = o(||〈x, y〉||2) the result is

f(x, y) = x2 + y2 + o(||〈x, y〉||2).
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This can be used to compute limits, e.g.

lim
(x,y)→(0,0)

ln(1 + x2 + y2)

x2 + y2
= lim

(x,y)→(0,0)

x2 + y2 + o(||〈x, y〉||2)
x2 + y2

= lim
(x,y)→(0,0)

1+o(1) = 1.

The second order Taylor formula with reference point (x0, y0) is

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1

2
(fxx(x0, y0)(x− x0)

2 + 2fxy(x0, y0)(x− x0)(y − y0) + fyy(x0, y0)(y − y0)
2)

+ o(||〈x− x0, y − y0〉||2).

The corresponding formula for fuctions of three variables is

f(x, y, z) = f(x0, y0, z0)+fx(x0, y0, z0)(x−x0)+fy(x0, y0, z0)(y−y0)+fz(x0, y0, z0)(z−z0)

+
1

2
(fxx(x0, y0, z0)(x− x0)

2 + fyy(x0, y0, z0)(y − y0)
2 + fzz(x0, y0, z0)(z − z0)

2)

+fxy(x0, y0, z0)(x−x0)(y−y0)+fxz(x0, y0, z0)(x−x0)(z−z0)+fyz(x0, y0, z0)(y−y0)(z−z0)
+ o(||〈x− x0, y − y0, z − z0〉||2).
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Lecture 18 Parametric Problems (optional)

For z = f(x, y) or w = f(x, y, z), we have defined partial derivatives like
∂z

∂x
,
∂w

∂y
,
∂w

∂z
,

etc. These are differentiations with all except one variable held constant. Natu-

rally, we can also perform integrations to multivariable functions but with all except

one variable held constant, for example,
∫

f(x, y) dy means that x is held constant

and the integration is for the variable y only; similarly,
∫ b

a
f(x, y, z)dx means y and

z are held constant, and the definite integral is performed for the variable x only.

Thus, if f(x, y) = x2 + y2 + xy, then

∫ b

a

f(x, y)dy =

∫ b

a

(x2 + y2 + xy)dy

=

[

x2y +
y3

3
+
x

2
y2

]

∣

∣

∣

∣

∣

b

a

= x2(b− a) +
b3 − a3

3
+
x

2
(b2 − a2)

We see that
∫ b

a
f(x, y)dy is a function of x, which we can denote as F (x), where a

and b are regarded as given constants.

Let us note that F ′(x) = 2x(b−a)+ 1
2
(b2−a2) by differentiation of the expression

of F (x), i.e. F (x) = x2(b− a) + b3−a3

3
+ x

2
(b2 − a2).

On the other hand, we have

fx(x, y) = 2x+ y and
∫ b

a

fx(x, y)dy =

∫ b

a

(2x+ y)dy =

(

2xy +
y2

2

)

∣

∣

∣

∣

∣

b

a

= 2x(b− a) +
b2 − a2

2

Therefore, we have

F ′(x) =

∫ b

a

fx(x, y)dy, i.e.

d

dx

[
∫ b

a

f(x, y)dy

]

=

∫ b

a

∂

∂x
f(x, y)dy

(1)

This is to say, whether we perform integration first and differentiation second, or

differentiation first and integration second, we may arrive at the same result.
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Let us note, however, that our above discussion is not a rigorous proof that

identity (1) holds for any function f(x, y) as we merely checked that this identity

happens to be true for the particular function f(x, y) = x2 + y2 + xy.

Nevertheless, identity (1) might be true in general, and it is an interesting prob-

lem to find an answer for this. The following theorem is a result of some research

along this line.

Theorem 1. Suppose that for every x ∈ (c, d), where −∞ ≤ c < d ≤ ∞, the

following hold:

(i)
∫ b

a
f(x, y)dy and

∫ b

a
∂
∂x
f(x, y)dy exist,

(ii) fxx(x, y) exists and satisfies

|fxx(x, y)| ≤ g(y) for a ≤ y ≤ b, c < x < d,

where g(y) is some function with the property that

∫ b

a

g(y)dy = K <∞

Then for each x ∈ (c, d),

d

dx

∫ b

a

f(x, y)dy =

∫ b

a

∂

∂x
f(x, y)dy

Remark. Let us note that condition (i) in Theorem 1 is very natural. In fact,

it is necessary for identity (1) to make any sense. However, condition (ii) makes a

restriction to the function f(x, y). For example, if f(x, y) = x2

2
g(y), then fxx(x, y) =

g(y) and such an f(x, y) satisfies (ii) only if
∫ b

a
g(y)dy < ∞. Nevertheless, many

functions satisfy (ii).

Proof of Theorem 1. Let us denote F (x) =
∫ b

a
f(x, y)dy. We need to show

F ′(x) =

∫ b

a

∂

∂x
f(x, y)dy,

i.e.

lim
h→0

F (x+ h) − F (x)

h
=

∫ b

a

∂

∂x
f(x, y)dy,

or

lim
h→0

[

F (x+ h) − F (x)

h
−
∫ b

a

∂

∂x
f(x, y)dy

]

= 0
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Our strategy of achieving this is to use a squeezing argument: if we can find a

function ǫ(h) satisfying

0 ≤
∣

∣

∣

∣

F (x+ h) − F (x)

h
−
∫ b

a

∂

∂x
f(x, y)dy

∣

∣

∣

∣

≤ ǫ(h)

and ǫ(h) → 0 as h→ 0, then we must have

lim
h→0

∣

∣

∣

∣

F (x+ h) − F (x)

h
−
∫ b

a

∂

∂x
f(x, y)dy

∣

∣

∣

∣

= 0

which implies that the limit of the quantity inside the absolute value sign is 0. A

key step in this strategy is to rewrite and change the quantity inside the absolute

value sign through using inequalities, to arrive at a simpler expression which can be

used as ǫ(h). The criterion is that ǫ(h) → 0 should be evident.

Let us now start this process. We have
∣

∣

∣

∣

F (x+ h) − F (x)

h
−
∫ b

a

∂

∂x
f(x, y)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

1

h

[
∫ b

a

f(x+ h, y)dy −
∫ b

a

f(x, y)dy

]

−
∫ b

a

∂

∂x
f(x, y)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

[

f(x+ h, y) − f(x, y)

h
− ∂

∂x
f(x, y)

]

dy

∣

∣

∣

∣

(by properties of integrals)

=

∣

∣

∣

∣

∣

∫ b

a

[

fx(x, y)h+ fxx(x+ θh, y)h2

2

h
− fx(x, y)

]

dy

∣

∣

∣

∣

∣

(by using Taylor’s formula)

=

∣

∣

∣

∣

∫ b

a

h

2
fxx(x+ θh, y)dy

∣

∣

∣

∣

≤ |h|
2

∫ b

a

|fxx(x+ θh, y)|dy

≤ |h|
2

∫ b

a

g(y)dy by condition (ii)

= K · |h|
2

Clearly we can take ǫ(h) = K · |h|
2

. This finishes the squeezing process and hence

proved what we want. 2

Example 1 Find
d

dx

∫ ∞

1

e−xy

y
dy (x > 0).

Solution f(x, y) =
e−xy

y
, fx(x, y) = −e−xy, fxx(x, y) = ye−xy

For any d > c > 0, fxx(x, y) = ye−xy ≤ ye−cy when c < x < d and g(y) = ye−cy

is clearly integrable on [1,∞). Hence condition (ii) of Theorem 1 is satisfied. It is
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easily seen that condition (i) is also satisfied (please check this). Therefore we can

use theorem 1 to conclude

d

dx

∫ ∞

1

e−xy

y
dy =

∫ ∞

1

∂

∂x

(

e−xy

y

)

dy

=

∫ ∞

1

−e−xydy =
e−xy

x

∣

∣

∣

∣

∣

∞

1

=
−e−x

x
.

2

From the last part of the above calculation, we observe that if we change the

integration limits to from 0 to ∞, then

∫ ∞

0

e−xydy =
e−xy

x

∣

∣

∣

∣

∣

∞

0

=
1

x
.

Therefore, by using Theorem 1 (please check that the conditions are satisfied),

−1

x2
=

(

1

x

)′

=
d

dx

∫ ∞

0

e−xydy =

∫ ∞

0

∂

∂x
e−xydy =

∫ ∞

0

−ye−xydy

2

x3
=

(−1

x2

)′

=
d

dx

∫ ∞

0

−ye−xydy =

∫ ∞

0

∂

∂x
(−ye−xy)dy =

∫ ∞

0

y2e−xydy

· · · · · ·
(−1)nn!

xn+1
=

∫ ∞

0

(−1)nyne−xydy

This last identity can be written as

∫ ∞

0

yne−xydy =
n!

xn+1
, n = 1, 2 . . .

This turns out to be a useful formula. For example, if we let x = m, we obtain

∫ ∞

0

yne−mydy =
n!

mn+1
, n = 1, 2, . . . , m = 1, 2, . . .

This formula may not be as easily proved by other methods (can you?)
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Lecture 19 Maxima and Minima

Recall that if the graph of the function y = f(x) is as in the following diagram, then

f(x) has local maxima at x = x1, x = x3 and it has a local minimum at x = x2.

The absolute maximum in [a, b] is achieved at x = x3 and the absolute minimum is

achieved at x = a.

x

y

y= f(x)

a bx xx1 2 3

These notions carry to multivariable functions naturally. We will study in detail

the situation with two variable functions.

Definitions. We say f(x, y) has a relative maximum (or local maximum) at

(x0, y0) if f(x, y) ≤ f(x0, y0) for all (x, y) near (x0, y0). If the inequality sign is

reversed, then we say f(x, y) has a relative minimum (or local minimum) at

(x0, y0).

f(x, y) is said to have an absolute maximum at (x0, y0) if f(x, y) ≤ f(x0, y0) for

all (x, y) in the domain of f(x, y); if this inequality is reversed, then we say f(x, y)

has an absolute minimum at (x0, y0).

z

Local and
also absolute
maximum

y

x

Local maximum

Local and
also absolute
minimum

Theorem 1 (Necessary condition) If f(x, y) has a relative extremum (i.e., it has

either a local max or local min) at (x0, y0), and if fx(x0, y0), fy(x0, y0) exist, then

fx(x0, y0) = 0, fy(x0, y0) = 0
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Proof. Denote G(x) = f(x, y0) and H(y) = f(x0, y). Then G(x) has a local

extremum at x = x0, H(y) has a local extremum at y = y0. Therefore, by the

properties for single variable functions, G′(x0) = 0, H ′(y0) = 0. Since G′(x0) =

fx(x0, y0), H
′(y0) = fy(x0, y0), we obtain

fx(x0, y0) = 0, fy(x0, y0) = 0.

2

Theorem 1 motivates the introduction of the following definition.

Definition. If fx(x0, y0) = 0 and fy(x0, y0) = 0, then (x0, y0) is called a critical

point of f(x, y).

Theorem 1 implies that a local extremum point must be a critical point (provided

that the partial derivatives exist). The converse conclusion, i.e., a critical point must

be a local extremum point, however, is not true in general. When a critical point

is not a local extremum point, then it is called a saddle point. A typical saddle

point is indicated in the following diagram.

z

y

x

Saddle point
(x ,y 0)0

Note that if (x0, y0) is a critical point of z = f(x, y), then at (x0, y0, z0) on the

surface, the tangent plane has normal ~n = 〈fx(x0, y0), fy(x0, y0),−1〉 = 〈0, 0,−1〉,
which is perpendicular to the xy-plane. Therefore the tangent plane is horizontal.

In particular, the tangent plane at a saddle point is horizontal.

Just as in the case of single variable functions, to ensure that a critical point is a

local extremum point for a two variable function, one needs extra conditions. This

is the contents of the following theorem, whose proof we omit.

Theorem 2 (Sufficient conditions, also known as the second derivative test)

Suppose that (x0, y0) is a critical point of f(x, y), and f(x, y) has continuous second

order partial derivatives near (x0, y0). Denote

D = fxx(x0, y0)fyy(x0, y0) − [fxy(x0, y0]
2.

Then
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(a) D > 0 and fxx(x0, y0) > 0 imply that f(x, y) has a local minimum at (x0, y0);

(b) D > 0 and fxx(y0, y0) < 0 imply that f(x, y) has a local maximum at (x0, y0);

(c) D < 0 implies that (x0, y0) is a saddle point;

(d) D = 0 implies that no conclusion can be drawn unless higher order partial

derivatives are used.

Proof. If (x0, y0) is a critical point of f then the second order Taylor polynomial

is

f(x, y) ≈ f(x0, y0)+
1

2
fxx(x0, y0)(x−x0)

2+
1

2
fyy(x0, y0)(y−y0)

2+fxy(x0, y0)(x−x0)(y−y0).

The graph f is approximately a paraboloid of the form

z = D + A(x− x0)
2 + 2B(x− x0)(y − y0) + C(y − y0)

2

where D = f(x0, y0), A = 1
2
fxx(x0, y0), B = 1

2
fxy(x0, y0),

1
2
fyy(x0, y0). We have a

cup-like elliptic paraboloid, corresponding to a minimum, if A > 0 and AC−B2 > 0,

an upside-down elliptic paraboloid, corresponding to a maximum, if A < 0 and

AC −B2 > 0 and a saddle if AC −B2 < 0. The remaining cases are inconclusive.

This theorem is very useful in classifying critical points of a given function f(x, y),

and is the main tool in finding local extremum points. Let us see how the theorem

is used in some concrete problems below.

Example. Find all local extrema of f(x, y) = 3xy − x3 − y3.

Solution. This function is a polynomial in x and y. Therefore it has all the partial

derivatives, and the partial derivatives are continuous (they are again polynomials

in x and y).

By Theorem 1 we know all the extrema are critical points, and by Theorem 2, we

can determine whether a critical point is local maximum or local minimum points,

provided that case (d) does not occur.

Thus we can follow two main steps: Step 1, find all the critical points, and Step

2, classify the critical points obtained in Step 1 through using Theorem 2.

We know critical points are the solutions of the equation system

{

fx(x, y) = 0

fy(x, y) = 0
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i.e.
{

3y − 3x2 = 0 (1)

3x− 3y2 = 0 (2)

¿From (1) we obtain y = x2. Substituting this into (2), we obtain

3x− 3(x2)2 = 0, i.e. x(1 − x3) = 0

The solutions are x = 0, x = 1. When x = 0, y = x2 = 0 and we obtain one

critical point (x, y) = (0, 0). When x = 1, y = x2 = 1 and we obtain one more

critical point (x, y) = (1, 1). Since these are the only solutions to the system (1) -

(2), we have exactly two critical points for the function. Step 1 is done.

To use Theorem 2, we calculate

fxx(x, y) = −6x, fyy(x, y) = −6y, fxy(x, y) = 3.

Hence

D = fxxfyy − f 2
xy = 36xy − 9

At (0, 0), D = −9 < 0. By Theorem 2, this critical point is a saddle point.

At (1, 1), D = 36 − 9 > 0 and fxx = −6 < 0. By Theorem 2, (1, 1) is a local

maximum point. This finishes step 2, and we conclude that the function f(x, y) has

one local maximum point at (1, 1), and there is no other extremum point. 2



100

Lecture 20 Extrema Over a Given Region

Very often, we need to find the absolute extrema of a given funciton f(x, y) on

a given region R which may only be part of the natural domain of f(x, y). The

following theorem guarantees that such extrema usually exist.

Theorem 1. If f(x, y) is continuous on a closed and bounded region R, then f

has both an absolute maximum and an absolute minimum on R.

Though this theorem looks evident, a rigorous proof is not trivial – it depends on

the very notion of continuity and the theory on the completeness of real numbers,

the later being outside the scope of this unit. Therefore we will not give the proof

of this theorem here.

Nevertheless, let us see a few examples showing that each condition in the theo-

rem is necessary.

Example 1. f(x, y) = 1
x2+y2 is continuous on the bounded region R = {(x, y) :

0 < x2 + y2 ≤ 1}, but it has no absolute maximum on R (when (x, y) approaches

(0, 0), f(x, y) approached +∞). The reason is that R is not closed.

Example 2 f(x, y) = x2 + y2 is continuous on the closed region R = {(x, y) :

x2+y2 ≥ 1}, but it has no absolute maximum on R. This is because R is unbounded.

Example 3. f(x, y) =

{

1
x2+y2 when(x, y) 6= (0, 0)

1 when (x, y) = (0, 0)
has no absolute maximum

on the bounded closed region R = {(x, y) : x2 + y2 ≤ 1}. This is because f(x, y) is

not continuous at (0, 0).

The following diagram shows that when the conditions of Theorem 1 are satisfied,

the extrema of f(x, y) on R may occur at an interior point of R as well as a boundary

point of R.

x

z

y

Absolute maximum

Absolute minimum

f (x,y)z=

R

Theorem 2. If f(x, y) has an absolute extremum at an interior point (x0, y0) of
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R, then (x0, y0) is a critical point if the partial derivatives fx(x0, y0) and fy(x0, y0)

exist.

Proof. As such an extremum is also a local extremum, the conclusion follows form

Theorem 1 in Lecture 18. 2

The above theorem implies that absolute extrema of f(x, y) on R can only occur

at critical points or boundary points. This helps very much when we want to locate

the absolute extrema. Indeed, we can follow the following three steps:

Finding absolute extrema of f(x, y) over R:

Step 1. Find all the critical points that lie in the

interior of R.

Step 2. Find the boundary of R and

the extrema of f(x, y) over the boundary.

Step 3. Evaluate f(x, y) at all the points in Step 1,

and compare them with the extrema obtained

in Step 2. The largest is the absolute

maximum, and the smallest is the absolute

minimum.

Example Find the absolute maximum and minimum of f(x, y) = x2 +y2 +6xy−y
on the closed triangular region R with vertices (0, 0), (1, 0) and (0, 1).

Solution. We follow the three steps listed above.

Step 1. Find critical points.

We need to solve
{

fx(x, y) = 0

fy(x, y) = 0

simultaneously.

fx = 2x+ 6y, fy = 2y + 6x− 1

Solving
{

2x+ 6y = 0

2y + 6x− 1 = 0

we obtain one solution x = 3
16
, y = − 1

16
. Thus there is one critical point (x, y) =

(

3
16
,− 1

16

)

. A sketch of the region R shows this point is not in R. Therefore this

point will not be counted.

Step 2. Find the boundary of R and the extrema of f(x, y) on the boundary.
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We need a sketch of the region R and the equations of its boundary. It is

convenient in this case to divide the boundary of R into three parts L1, L2 and L3,

as indicated in the diagram.

x

y

L

L

L

(0,0) (1,0)

(0,1)

1

2

3

On L1, x = 0 and f(x, y) = f(0, y) = y2 − y, 0 ≤ y ≤ 1. This is a single variable

function g(y) = y2 − y over the interval 0 ≤ y ≤ 1. Using first year calculus we can

easily obtain that it attains maximum 0 at y = 0 and y = 1, minimum −1
4

at y = 1
2
.

On L2, y = 0 and f(x, y) = f(x, 0) = x2, 0 ≤ x ≤ 1. Clearly its maximum is 1

attained at x = 1, and minimum is 0 at x = 0.

On L3, y = 1 − x and f(x, y) = f(x, 1 − x) = −4x2 + 5x, 0 ≤ x ≤ 1. Using first

year calculus, we find the maximum is 25
16

occurring at x = 5
8
, and minimum is 0 at

x = 0.

Combining results on L1, L2 and L3, we find that the maximum on the boundary

is 25
16

, minimum on the boundary is −1
4
.

Step 3. As there is no critical point in R, the absolute maximum on R is 25
16

and

absolute minimum on R is −1
4
, both achieved on the boundary of R. 2.
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Lecture 21 Lagrange Multipliers

We know from the last lecture that when we want to find the absolute extrema of

f(x, y) on a given bounded region R, we need to find the extrema of f(x, y) on the

boundary of R. If, for example, f(x, y) = xy and R = {(x, y) : x2 + y2 ≤ 1}, then

the boundary of R is just the unit circle C : x2 + y2 = 1. To find the maximum of

f(x, y) on C is to find the maximum of f(x, y) under the constraint x2 + y2 = 1.

Such a maximum or minimum is called the constrained maximum or minimum.

In many practical situations, we need to solve such constrained extremum prob-

lems. Let us consider in some detail the constrained extremum problems for two

and three variable functions.

Problem: Maximize or minimize f(x, y) under the constraint g(x, y) = 0.

There is a general method, called the Lagrange multiplies method, which

can usually be used effectively in solving this problem. It asserts that the extrema

occur at such points (x0, y0) which satisfy

∇f(x0, y0) = λ∇g(x0, y0),

where λ is some unknown parameter, called the Lagrange multiplier.

We will not give the rigorous mathematical theory for the validity of this method.

Instead, we will explain the use of this method through examples.

Example 1. At what point on the circle x2 + y2 = 1 does f(x, y) = xy have a

maximum? What is the maximum?

Solution. Denote g(x, y) = x2 + y2 − 1. Then we need to maximize f(x, y) under

the constraint g(x, y) = 0. By Lagrange multipliers method, maximum occurs at

some (x, y) which solves

∇f(x, y) = λ∇g(x, y) for some λ. (11)

We have

∇f(x, y) = y~i+ x~j, ∇g(x, y) = 2x~i+ 2y~j

Therefore (1) is equivalent to
{

y = λ2x

x = λ2y

Remember we also require g(x, y) = 0. Therefore, we need to solve the system of

equations
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





y = λ2x · · · · · · (2)

x = λ2y · · · · · · (3)

x2 + y2 = 1 · · · · · · (4)

Substituting (2) to (3) we obtain

x = λ2(λ2x) = 4xλ2,

i.e. x(1 − 4λ2) = 0

Hence we have either (i) x = 0 or (ii) 1 − 4λ2 = 0, i.e. λ = ±1
2
. If case (i) happens,

by (2), y = 0 and hence (4) can never be satisfied. This shows that (i) cannot occur.

Thus we must have case (ii), i.e. λ = 1
2

or λ = −1
2
.

When λ = 1
2
, by (2), y = x. Substituting this into (4) we deduce 2x2 = 1,

x = ± 1√
2
. It gives in turn y = ± 1√

2
. Therefore we obtain two pairs of solutions:

(x, y) =
(

1√
2
, 1√

2

)

, (x, y) =
(

−1√
2
, −1√

2

)

.

When λ = −1
2
, by (2), y = −x. Substituting this into (4) and we obtain another

two pairs of solutions: (x, y) =
(

1√
2
, −1√

2

)

, (x, y) =
(

−1√
2
, 1√

2

)

.

The Lagrange multiples method says the maximum occurs at some of these

solutions. To determine at which solution, we calculate

f

(

1√
2
,

1√
2

)

=
1

2
, f

(−1√
2
,
−1√

2

)

=
1

2
, f

(

1√
2
,
−1√

2

)

= −1

2
, f

(−1√
2
,

1√
2

)

= − 1√
2
.

Therefore, maximum is 1
2
, and it occurs at (x, y) =

(

1√
2
, 1√

2

)

and
(

−1√
2
, −1√

2

)

. 2

Lagrange multiples method works for three and n-variable functions as well.

For three variable functions, it asserts that if an extremum of f(x, y, z) under the

constraint g(x, y, z) = 0 occurs at (x0, y0, z0), then

∇f(x0, y0, z0) = λ∇g(x0, y0, z0) for some parameter λ.

Example 2. Find the points on the sphere x2 + y2 + z2 = 1 that are closest and

furthest to the point (2, 1, 1).

Solution. The distance from (2, 1, 1) to an arbitrary point (x, y, z) is d(x, y, z) =
√

(x− 2)2 + (y − 1)2 + (z − 1)2. Therefore, our problem is equivalent to:

Minimize/maximise d(x, y, z) under the constraint x2 + y2 + z2 = 1.
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This is equivalent to

Minimize D(x, y, z) = (x− 2)2 + (y − 1)2 + (z − 1)2

under g(x, y, z) = x2 + y2 + z2 − 1 = 0

We will see later that working with the function D(x, y, z) is much simpler than

working with d(x, y, z), though the minimization problems are equivalent.

Using Lagrange multipliers, we first solve

{

∇D(x, y, z) = λ ∇g(x, y, z)
g(x, y, z) = 0

Since ∇D(x, y, z) = 2(x− 2)~i+ 2(y − 1)~j + 2(z − 1)~k (compare with ∇d(x, y, z))
∇g(x, y, z) = 2x~i+ 2y~j + 2z~k

We need to solve


















2(x− 2) = λ2x

2(y − 1) = λ2y

2(z − 1) = λ2z

x2 + y2 + z2 = 1

(5)

(6)

(7)

(8)

(5) ⇒ x =
2

1 − λ
, (6) ⇒ y =

1

1 − λ
, (7) ⇒ z =

1

1 − λ

Substituting all these expressions into (8), we obtain

(

2

1 − λ

)2

+

(

1

1 − λ

)2

+

(

1

1 − λ

)2

= 1, i.e.

(1 − λ)2 = 6, or 1 − λ = ±
√

6, λ = 1 ±
√

6.

When λ = 1 −
√

6, we obtain x = 2√
6
, y = 1√

6
, z = 1√

6
, or (x, y, z) =

(

2√
6
, 1√

6
, 1√

6

)

.

When λ = 1 +
√

6, we obtain (x, y, z) =
(

−2√
6
, −1√

6
, −1√

6

)

.

Now we calculate

D

(

2√
6
,

1√
6
,

1√
6

)

=

(

2√
6
− 2

)2

+

(

1√
6
− 1

)2

+

(

1√
6
− 1

)2

= 6

(

1√
6
− 1

)2

D

(−2√
6
,
−1√

6
,
−1√

6

)

= 6

(

1√
6

+ 1

)2

.

Therefore the minimum occurs at
(

2√
6
, 1√

6
, 1√

6

)

and the maximum occurs at
(

−2√
6
, −1√

6
, −1√

6

)

.

2
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Lecture 22 Double Integrals

Recall that the area under the curve y = f(x) between x = a and x = b is given by

∫ b

a

f(x)dx = lim
n−→∞

n
∑

k=1

f(x∗k)∆xk,

x

y

y=f(x)

a bx xk k+1

where for fixed n,
∑n

k=1 f(x∗k)∆xk is the sum of the areas of n rectangles with base

∆xk and height f(x∗k), k = 1, . . . , n. a = x0 < x1 < . . . < xn−1 < xn = b divide

the interval [a, b] into n parts with ∆xk = xk − xk−1 converging to 0 (for all k) as

n −→ ∞, x∗k ∈ [xk−1, xk]. Thus, for fixed n,
∑n

k=1 f(x∗k)∆xk gives an approximation

of the area under the curve, and by passing to the limit n −→ ∞, we obtain the

accurate area under the curve.

A similar consideration introduces double integrals. This time the question is to

find the volume under a surface z = f(x, y).

To be more accurate, we suppose f(x, y) is positive everywhere, and we want to

find the volume of the solid lying directly above a given region R in the xy–plane

but under the surface z = f(x, y).

y

z

x

z=f(x,y)

∆ A k

We divide R into n small parts with area ∆Ak, k = 1, . . . , n and choose an

arbitrary point (x∗k, y
∗
k) in each part and form the cylinders with base ∆Ak and

height f(x∗k, y
∗
k). Then

n
∑

k=1

f(x∗k, y
∗
k)∆Ak
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gives a good approximation of the volume under surface. If there is a limit for

this quantity as n −→ ∞ (as before, we require ∆Ak −→ 0 uniformly in k when

n −→ ∞), then this limit is the accurate volume under surface, and we define this

to be the double integral
∫∫

R
f(x, y)dA, i.e.

∫∫

R

f(x, y)dA = lim
n−→∞

n
∑

k=1

f(x∗k, y
∗
k)∆Ak.

The above limit can be used for any function f(x, y) (not necessarily positive)

and hence the double integral
∫ ∫

R
f(x, y)dA is defined for any function for which

the limit exists.

From the definition, it is easy to deduce the following properties.

(a)
∫∫

R
cf(x, y)dA = c

∫∫

R
f(x, y)dA, c is a constant.

(b)
∫∫

R
[f(x, y) ± g(x, y)]dA =

∫∫

R
f(x, y)dA±

∫∫

R
g(x, y)dA

(c)
∫∫

R
f(x, y)dA =

∫∫

R1
f(x, y)dA+

∫∫

R2
f(x, y)dA, where R is divided into

two subregions R1 and R2.

Remember that though
∫ b

a
f(x)dx is defined by a limit, in practice,

∫ b

a
f(x)dx is

calculated by the formula

∫ b

a

f(x)dx = F (b) − F (a),

where F (x) is an antiderivative of f(x), i.e. F ′(x) = f(x).

Similarly, we don’t want to calculate
∫∫

R
f(x, y)dA by its definition, i.e., by using

the limiting process described in the definition. A practical method of calculating a

double integral is by changing it into iterated integrals.

Theorem 1. Let R be the rectangle: a ≤ x ≤ b, c ≤ y ≤ d. If f(x, y) is continuous

on R, then

∫∫

R

f(x, y)dA =

∫ b

a

∫ d

c

f(x, y)dy dx =

∫ d

c

∫ b

a

f(x, y)dx dy.

Here
∫ b

a

∫ d

c

f(x, y)dy dx =

∫ b

a

[
∫ c

c

f(x, y)dy

]

dx,

where we calculate the integral
∫ d

c
f(x, y)dy (regarding x as a parameter) first,

which gives a function of x, and then integrate this function of x from a to b.
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∫ d

c

∫ b

a
f(x, y)dx dy is done similarly but with the order of integration reversed (inte-

grate for x first, for y second). These are called iterated integrals.

The proof of Theorem 1 uses the definition of integrals, and we will not give it

here.

Example 1 Find
∫∫

R
y2(x2 + 1)dA, where R = {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1}.

Solution By Theorem 1,

∫∫

R

y2(x2 + 1)dA =

∫ 2

1

∫ 1

0

y2(x2 + 1)dy dx

=

∫ 2

1

y3

3
(x2 + 1)

∣

∣

∣

∣

∣

1

0

dx =

∫ 2

1

1

3
(x2 + 1)dx

=
1

3

(

x3

3
+ x

)

∣

∣

∣

∣

∣

2

1

=
10

9
.

Or

∫∫

R

y2(x2 + 1)dA =

∫ 1

0

∫ 2

1

y2(x2 + 1)dx dy

=

∫ 1

0

y2

(

x3

3
+ x

)

∣

∣

∣

∣

∣

2

1

dy

=

∫ 1

0

y2 · 10

3
dy =

10

3
· y

3

3

∣

∣

∣

∣

∣

1

0

=
10

9
.

2

Theorem 1 can be explained geometrically in the following way. For fixed x, z =

f(x, y) is a curve, and

A(x) =

∫ d

c

f(x, y)dy

is the area under this curve.
∫ b

a
A(x)dx then gives the volume of the solid under the

surface and above the rectangle a ≤ x ≤ b, c ≤ y ≤ d.

There is a similar explanation for B(y) =
∫ b

a
f(x, y)dx and

∫ d

c
B(y)dy.

Example 2. Find the volume of the solid that is bounded above by the surface

z = x2 + y2 and below by the rectangle R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
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y

z

x

A(x)

Solution

V =

∫∫

R

(x2 + y2)dA

=

∫ 1

0

∫ 1

0

(x2 + y2)dx dy

=

∫ 1

0

(

x3

3
+ y2x

)

∣

∣

∣

∣

∣

1

0

dy

=

∫ 1

0

(
1

3
+ y2)dy =

(

1

3
y +

y2

3

)

∣

∣

∣

∣

∣

1

0

=
2

3
.

2

Example 3 Find
∫∫

R
y sin(xy)dA,R =

{

(x, y) : 0 ≤ x ≤ 1, π
4
≤ y ≤ π

2

}

.

Solution

∫∫

R

y sin(xy)dA =

∫ π
2

π
4

∫ 1

0

y sin(xy)dx dy

=

∫ π
2

π
4

y · −1

y
cos(xy)

∣

∣

∣

∣

∣

1

0

dy =

∫ π
2

π
4

(− cos y + 1)dy

= (− sin y + y)

∣

∣

∣

∣

∣

π
2

π
4

=
π

4
+

√
2 − 2

2
=
π − 4 + 2

√
2

4

2.
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Lecture 23 Integration of Double Integrals

We learned in the last lecture that if R is a rectangle: R = {(x, y) : a ≤ x ≤ b, c ≤
y ≤ d}, then the calculation of the double integral

∫ ∫

R
f(x, y)dA can be reduced to

calculating iterated integrals, namely

∫∫

R

f(x, y)dA =

∫ d

c

∫ b

a

f(x, y)dx dy =

∫ b

a

∫ d

c

f(x, y)dy dx.

This technique can be extended to more general regions. If g1(x) and g2(x) are

continuous functions and g1(x) ≤ g2(x) for a ≤ x ≤ b, then the region

R = {(x, y) : g1(x) ≤ y ≤ g2(x), a ≤ x ≤ b}

is called a type I region. In other words, a type I region is a region that is bounded

by two vertical lines (x = a and x = b) and two curves y = g1(x) and y = g2(x).

If h1(y) and h2(y) are continuous functions of y and h1(y) ≤ h2(y) for c ≤ y ≤ d,

then the region

R = {(x, y) : h1(y) ≤ x ≤ h2(y), c ≤ y ≤ d}
is called a type II region. It is bounded by two horizontal lines (y = c and y = d)

and two curves x = h1(y), x = h2(y).

x

y

a b

type I region

y=g

y=g (x)1

(x)2

x

y

type II region

x=hx=h (y)2(y)1

For type I or type II regions, the double integral
∫∫

R
f(x, y)dA can also be

calculated through iterated integrals, as the following theorem asserts.

Theorem 1

(a) If R is a type I region on which f(x, y) is continuous, then

∫∫

R

f(x, y)dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y)dy dx

(b) If R is a type II region on which f(x, y) is continuous, then

∫∫

R

f(x, y)dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y)dx dy
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Again we will not prove the theorem, but will see how it can be used in concrete

examples.

Example 1. Find
∫∫

R
x2ydA where R is the region enclosed by y = x, y = 1

2
x2

and x = 1.

Solution By sketching the region,

we see that it is a type I region, given by
1
2
x2 ≤ y ≤ x, 0 ≤ x ≤ 1

or a = 0, b = 1, g1(x) = 1
2
x2, g2(x) = x

in the old notations. Therefore, by Theorem 1, x

y

1

∫∫

R

x2y dA =

∫ 1

0

∫ x

1
2
x2

x2y dy dx =

∫ 1

0

x2 y
2

2

∣

∣

∣

∣

∣

x

1
2
x2

dx =

∫ 1

0

x2

[

x2

2
− 1

2

(

1

2
x2

)2
]

dx

=

(

1

2

x5

5
− 1

8

x7

7

)

∣

∣

∣

∣

∣

1

0

=
1

10
− 1

56
=

23

280
.

2Example 2. Evaluate
∫ 1

0

∫ 1√
y
ex3
dx dy by changing the order of integration.

Solution The integral
∫

ex3
dx is difficult to handle. However, the iterated integral

can be changed back to a double integral, with region R given by

√
y ≤ x ≤ 1, 0 ≤ y ≤ 1.

Sketching R, we realize that it

is also a type I region:

0 ≤ y ≤ x2, 0 ≤ x ≤ 1.

x

y

y=x

1

2

Therefore
∫ 1

0

∫ 1

√
y

ex3

dx, dy =

∫∫

R

ex3

dA

=

∫ 1

0

∫ x2

0

ex3

dy dx

=

∫ 1

0

ex3

y

∣

∣

∣

∣

∣

x2

0

dx =

∫ 1

0

ex3

x2dx

=
1

3
ex3

∣

∣

∣

∣

∣

1

0

=
1

3
(e− 1)
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2

Example 2 above shows that changing the order of integration sometimes can

make the integration much easier (or harder).

Example 3. Find the volume of the solid bounded by the cylinder x2 + y2 = 1,

the xy-plane and the plane z = 2 − y.

Solution V =
∫∫

R
(2 − y)dA

where R is the disk x2 + y2 ≤ 1,

which can be regarded as a

type I region:

−
√

1 − x2 ≤ y ≤
√

1 − x2, −1 ≤ x ≤ 1

or a type II region:

−
√

1 − y2 ≤ x ≤
√

1 − y2, −1 ≤ y ≤ 1.

y

z

x

Therefore,

V =

∫ 1

−1

∫

√
1−x2

−
√

1−x2

(2 − y)dy dx

=

∫ 1

−1

(

2y − y2

2

)

∣

∣

∣

∣

∣

√
1−x2

−
√

1−x2

dx

=

∫ 1

−1

4
√

1 − x2 dx

= 2

∫ 1

0

4
√

1 − x2 dx (since 4
√

1 − x2 is an even function)

= 2

∫ π
2

0

4
√

1 − sin2 θd sin θ (x = sin θ)

= 2

∫ π
2

0

4 cos θ · cos θdθ

= 8

∫ π
2

0

1 + cos(2θ)

2
dθ

= 4

[

θ +
1

2
sin(2θ)

]
π
2

0

= 2π

2
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Lecture 24 Double Integrals in Polar Coordinates,

Surface Area.

Recall that a point (x, y) with polar coordinates r and θ has the following relations

between its coordinates:

{

x = r cos θ

y = r sin θ

x

y

(x,y)

r

θ

A region R given in polar coordinates in the way

R = {(r, θ) : r1(θ) ≤ r ≤ r2(θ), α ≤ θ ≤ β}
is called a simple polar region.

x

y

simple polar region

r=r

r=r

1

2

(θ)

(θ)

θ=β

θ=α

Theorem 1 If R is a simple polar region on which f(x, y) = f(r cos θ, r sin θ) is

continuous, then

∫∫

R

f(x, y)dA =

∫ β

α

∫ r2(θ)

r1(θ)

f(r cos θ, r sin θ)rdr dθ

Thus we have one more class of regions for which a double integral can be cal-

culated through an iterated integral.

Theorem 1 can be proved by the definition of double integrals. Instead of Rie-

mann sums with rectangular area elements dA = dx ·dy we have now Riemann sums

with area elements of the form of sectors with radii r and r+dr and angle dθ, hence

dA = r dr dθ.
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Example 1. Evaluate
∫∫

R
(1 − x2 − y2)dA, where R is the part of the unit disk

in the first quadrant of the xy-plane.

Solution. R is a simple polar region:

0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1.

y

x

Therefore,

∫∫

R

(1 − x2 − y2)dA =

∫ π
2

0

∫ 1

0

(1 − r2 cos2 θ − r2 sin2 θ)rdr dθ

=

∫ π
2

0

∫ 1

0

(1 − r2)rdr dθ =

∫ π
2

0

(

r2

2
− r4

4

)

∣

∣

∣

∣

∣

1

0

dθ

=

∫ π
2

0

1

4
dθ =

1

4
· π

2
=
π

8
.

2

Example 2. Use polar coordinates to evaluate
∫ 1

−1

∫

√
1−x2

0
x
√

x2 + y2dy dx.

Solution The region of integration is

R : −1 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2

y

x

It is also a simple polar region, described by

R : 0 ≤ θ ≤ π, 0 ≤ r ≤ 1
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Therefore, by Theorem 1 of this lecture and Theorem 1 of Lecture 22, we have

∫ 1

−1

∫

√
1−x2

0

x
√

x2 + y2dy dx =

∫∫

R

x
√

x2 + y2dA

=

∫ π

0

∫ 1

0

r cos θ
√

r2 cos2 θ + r2 sin2 θrdrdθ

=

∫ π

0

∫ 1

0

r3 cos θdrdθ

=

∫ π

0

r4

4

∣

∣

∣

∣

∣

1

0

cos θdθ

=

∫ π

0

1

4
cos θdθ

=
1

4
sin θ

∣

∣

∣

∣

∣

π

0

= 0

Apart from calculating the volume of a solid enclosed by some surfaces, double

integrals can also be used to calculate the surface area S of a portion of a given

surface z = f(x, y) whose projection on the xy-plane is a certain region R.

y

z

x

R

The formula is

S =
∫∫

R

√

[fx(x, y)]
2 + [fy(x, y)]

2 + 1 dA

Notice the similarity to the arc length formula for a curve y = f(x) for a ≤ x ≤ b

ℓ =

∫ b

a

√

[f ′]2 + 1 dx.

The area formula is plausible by the following argument. The area is approxi-

mately the sum of area elements on the surface that lie over rectangles with area
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dA = dx dy. These curved area elements can be approximated by parallelograms in

the corresponding tangent plane (think of fish scales attached to the surface) that

project down to dA. Such a parallelogram over the vectors 〈1, 0〉 and 〈0, 1〉 in the

xy-plane is spanned by the vectors 〈1, 0, fx〉 and 〈0, 1, fy〉. Using the cross product

we find its area

||〈1, 0, fx〉 × 〈0, 1, fy〉|| =
√

f 2
x + f 2

y + 1.

Hence the area element dA = dx dy is stretched by that factor, which results in the

above formula.

Example 3 Find the surface area of the portion of the paraboloid z = x2 + y2

below the plane z = 2.

Solution. A sketching of the

paraboloid and the plane shows

that R is the disk x2 + y2 ≤ 2. This

is because the paraboloid

z = x2 + y2 and the plane z = 2 intersect

at x2 + y2 = 2, z = 2. R is a simple

polar region: 0 ≤ θ ≤ 2π, 0 ≤ r ≤
√

2.

y

z

x

Therefore,

S =

∫∫

R

√

f 2
x + f 2

y + 1dA =

∫∫

R

√

(2x)2 + (2y)2 + 1dA

=

∫ 2π

0

∫

√
2

0

√

4r2 cos2 θ + 4r2 sin2 θ + 1rdrdθ

=

∫ 2π

0

∫

√
2

0

√
4r2 + 1rdrdθ

=

∫ 2π

0

1

12
(4r2 + 1)3/2

∣

∣

∣

∣

∣

√
2

0

dθ

=

∫ 2π

0

13

6
dθ =

13

6
· 2π =

13

3
π.

2.
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Lecture 25 Triple Integrals

For a function f(x), we have the integral
∫ b

a
f(x)dx, which may be called a single inte-

gral. For a two variable function f(x, y), we defined the double integral
∫∫

R
f(x, y)dA

over a region R in the xy–plane, which is the limit of
∑n

k=1 f(x∗k, y
∗
k)∆Ak as n −→ ∞,

where ∆Ak is the area of the k–th subregion of R, and (x∗k, y
∗
k) is an arbitrarily cho-

sen point in it. This idea generalises naturally to three variable functions f(x, y, z),

and we define the triple integral
∫∫∫

G
f(x, y, z)dV by a similar process. Here G is a

bounded solid in the xyz–space. Move precisely, we assume that G is contained in

a large box–like region B:

a1 < x < a2, b1 < y < b2, c1 < z < c2

and divide B into m subboxes by planes parallel to the coordinate planes. We require

that as m −→ ∞, the size of each of the subboxes shrinks to 0. We then discard

those subboxes that contain any points outside G and let n denote the number of the

remaining subboxes. Let ∆Vk denote the volume of the kth remaining subbox. Let

∆Vk denote the volume of the kth remaining subbox and (x∗k, y
∗
k, z

∗
k) an arbitrarily

selected point in it. We can then form the sum (called the Riemann Sum)

Sn =
n
∑

k=1

f(x∗k, y
∗
k, z

∗
k)∆Vk

The limit limn−→∞ Sn, when it exists, is defined to be the triple integral
∫∫∫

G

f(x, y, z)dV.

If f(x, y, z) is continuous on G, and G is not too complicated, then it can be

proved that the triple integral
∫∫∫

G
f(x, y, z)dV always exists. If f(x, y, z) is the

varying density of the solid G, then
∫∫∫

G
f(x, y, z)dV gives the mass of G.

Triple integrals have also the usual properties enjoyed by single and double in-

tegrals.

∫∫∫

G
cf(x, y, z)dV = c

∫∫∫

G
f(x, y, z)dV, c is a constant

∫∫∫

G
[f ± g]dV =

∫∫∫

G
fdV ±

∫∫∫

G
g dV

∫∫∫

G
fdV =

∫∫∫

G1
f dV +

∫∫∫

G2
f dV ,

where G is the union of G1 and G2

∫∫∫

G
1dV = volume of G
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The evaluation of triple integrals is again through reducing it to iterated integrals

when the region G has certain special peoperties.

A region G is called a simple solid, if it can be expressed by

G = {(x, y, z) : g1(x, y) ≤ z ≤ g2(x, y), (x, y) ∈ R}

where R is a bounded region in the xy–plane, and g1(x, y), g2(x, y) are continuous

functions.

In other words, G is a simple solid if it consists of all the points directly above

or below R and are between the surfaces z = g1(x, y) and z = g2(x, y). We call R

the projection of G on the xy–plane.

y

x

z

R

G

z=g

z=g

1(x,y)

2 (x,y)

Theorem 1. If G is a simple solid: G = {(x, y, z) : g1(x, y) ≤ z ≤ g2(x, y), (x, y) ∈
R}, and f(x, y, z) is continuous on G, then

∫∫∫

G

f(x, y, z)dV =

∫∫

R

[

∫ g2(x,y)

g1(x,y)

f(x, y, z)dz

]

dA

This theorem shows that, if G is a simple solid, then the calculation of the triple

integral
∫∫∫

G
f dV can be reduced to calculating the single integral

∫ g2(x,y)

g1(x,y)
f(x, y, z)dz

first, where x, y are regarded as constants, and after this integral is done, say it is

F (x, y) (now x, y are regarded as variables), then calculating the double integral
∫∫

R

[

∫ g2(x,y)

g1(x,y)
f(x, y, z)dz

]

dA, i.e.
∫∫

R
F (x, y)dA. Of course, we need to change to

iterated integrals to evaluate the double integral
∫∫

R
F (x, y)dA.

Example 1. Evaluate
∫∫∫

G
zdV , where G is the wedge in the first octant cut from

the cylindrical solid y2 + z2 ≤ 1 by the planes y = x and y = 2x.

Solution We sketch the graph of G and realize that it is a simple solid:

0 ≤ z ≤
√

1 − y2, (x, y) ∈ R,
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y

z

x

y 2+z2 =1

(or z=(1-y)1/2 )

y

x
1

1

R

R = {(x, y) :
y

2
≤ x ≤ y, 0 ≤ y ≤ 1}

Therefore, by Theorem 1,

∫∫∫

G

z dV =

∫∫

R

[

∫

√
1−y2

0

z dz

]

dA

=

∫∫

R

z2

2

∣

∣

∣

∣

∣

√
1−y2

0

dA =

∫∫

R

1

2
(1 − y2)dA

=

∫ 1

0

∫ y

y

2

1

2
(1 − y2)dx dy

=

∫ 1

0

1

2
(1 − y2)

y

2
dy =

1

4

(

y2

2
− y4

4

)

∣

∣

∣

∣

∣

1

0

=
1

16

2

By rotating the roles of x, y and z in Theorem 1, we have the following variants

of it.

Theorem 2.

(a) If R is a bounded region in the xz–plane, and

G = {(x, y, z) : g1(x, z) ≤ y ≤ g2(x, z), (x, z) ∈ R}

and f is continuous on G, then

∫∫∫

G

f(x, y, z)dV =

∫∫

R

[

∫ g2(x,z)

g1(x,z)

f(x, y, z)dy

]

dA

(b) If R is a bounded region in the yz–plane, and

G = {(x, y, z) : g1(y, z) ≤ x ≤ g2(y, z), (y, z) ∈ R}
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and f is continuous on G, then

∫∫∫

G

f(x, y, z)dV =

∫∫

R

[

∫ g2(y,z)

g1(y,z)

f(x, y, z)dx

]

dA.

Example 2. Evaluate
∫∫∫

G
zdV by integrating first with respect to x, where G

is as in Example1.

Solution The projection of G

on the yz–plane is (in polar coordinates)

R′ : 0 ≤ θ ≤ π
2
, 0 ≤ r ≤ 1

G is between the plane

x = y and x = 1
2
y (i.e. y = 2x)

Therefore, by Theorem 2 part (b)

y

z

x

∫∫∫

G

zdV =

∫∫

R′

[

∫ y

1
2
y

zdx

]

dA

=

∫∫

R′

z · y
2
dA

=

∫ π
2

0

∫ 1

0

1

2
(r sin θ)(r cos θ)rdrdθ

=

∫ π
2

0

1

2
· r

4

4

∣

∣

∣

∣

∣

1

0

sin θ cos θdθ

=

∫ π
2

0

1

8
· 1

2
sin(2θ)dθ

=
1

16

− cos(2θ)

2

∣

∣

∣

∣

∣

π
2

0

=
1

16

2
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Lecture 26 Change of Variables

Recall that, if g(t) = f(x(t))x′(t), then

∫ b

a

g(t)dt =

∫ b

a

f(x(t))x′(t)dt =

∫ x(b)

x(a)

f(x)dx.

This is called integration by substitution, a very useful technique of integration. For

example,
∫ 2

0

tet2dt
(x=t2)

=

∫ 4

0

ex 1

2
dx =

1

2
ex

∣

∣

∣

∣

∣

4

0

=
1

2
(e4 − 1)

In double and triple integrals, there are similar techniques, which are the topics

of this lecture.

1. Change of Variables in Double Integrals

As the shape of the region R is important in changing the double integral
∫ ∫

R
f(x, y)dA into iterated integrals (recall what is type I region, what is type

II region), it is better to view the change of variables x = x(u, v), y = y(u, v) as a

transformation, which maps a point (u, v) in the uv–plane to a point (x, y) in the

xy–plane. Let S be a region in the uv–plane, and D a region in the xy–plane. We

say the transformation
{

x = x(u, v)

y = y(u, v)

is 1 − 1 (one-to-one) from S onto D if the following are satisfied.

(i) Every point in S gets mapped to a point in D;

(ii) Every point in D is the image of a point in S;

(iii) Different points in S get mapped to different points in D.

v

u y

x

S

(u,v)

D

(x,y)

Example 1. The transformation

x = u−
3
5v−

1
5 , y = u−

1
5 v−

2
5
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transforms S = {(u, v) : 1
2
≤ u ≤ 1, 1 ≤ v ≤ 3} onto the set D = {(x, y) : 1

2
≤ y

x2 ≤
1, 1 ≤ x

y3 ≤ 3}

y

xu

v

x=y

y=x y=x

x=3y3

2/22

3

In fact, from x = u−
3
5v−

1
5 and y = u−

1
5 v−

2
5 we deduce

y

x2
= u−

1
5v−

3
5u

6
5v

3
5 = u.

and
x

y3
= u−

3
5v−

1
5u

3
5 v

6
5 = v.

Thus,

S :
1

2
≤ u ≤ 1, 1 ≤ v ≤ 3

is transformed to
1

2
≤ y

x2
≤ 1, 1 ≤ x

y3
≤ 3

or
x2

2
≤ y ≤ 1

x2
, y3 ≤ x ≤ 3y3

2

Example 2. The transformation

{

x = r cos θ

y = r sin θ

maps S = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ π
2
} onto the part of the annulus 1 ≤ x2+y2 ≤ 4

lying in the first quadrant.

y

x

r

S

θ

D

This fact comes directly from the geometric interpretation of the transform, as

(r, θ) is the polar coordinates in the xy–plane.



123

Let us now come back to double integrals. If we use dA = dx dy to denote the

area element in the xy–plane , and dÃ = dudv that in the uv–plane, then

dA =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dÃ, or dx dy =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv,

where
∂(x, y)

∂(u, v)
= det

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

is called the Jacobian of x = x(u, v) and y = y(u, v). The change of variable

formula for double integral is

∫∫

D

f(x, y)dx dy =

∫∫

S

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv

Notice that
∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

denotes the absolute value of the Jacobian. The proof of this formula is based on

the fact that the rectangle with sides du and dv is approximately mapped to a

parallelogram with sides 〈 ∂x
∂u
du, ∂y

∂u
du〉 and 〈∂x

∂v
dv, ∂y

∂v
dv〉 in the xy plane by the linear

mapping
(

dx

dy

)

=

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)(

du

dv

)

.

Hence the area of the rectangle dx dy corresponds to the area of the parallelogram

∣

∣

∣

∣

det

(

∂x
∂u
du ∂y

∂u
du

∂x
∂v
dv ∂y

∂v
dv

)∣

∣

∣

∣

=

∣

∣

∣

∣

det

(

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)∣

∣

∣

∣

du dv.

Example 3. For x = r cos θ, y = r sin θ,

∂(x, y)

∂(r, θ)
=

∣

∣

∣

∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣

∣

∣

∣

=

∣

∣

∣

∣

cos θ −r sin θ

sin θ r cos θ

∣

∣

∣

∣

= r cos2 θ + r sin2 θ = r.

Hence we have
∫∫

D

f(x, y)dx dy =

∫∫

S

f(r cos θ, r sin θ)rdr dθ.

Example 4. Find the area of the region D given by

x2 ≤ y ≤ 2x2, y3 ≤ x ≤ 3y3
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Solution. Let u = y
x2 , v = x

y3 . Then D is mapped to S = {(u, v) : 1 ≤ u ≤ 2, 1 ≤
v ≤ 3} under the transformation

{

u = y
x2

v = x
y3

To calculate ∂(x,y)
∂(u,v)

, we can first solve for x and y in terms of u and v to obtain (see

Example 1)

x = u−
3
5 v−

1
5 , y = u−

1
5v−

2
5 .

Hence

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∣

−3
5
u−

8
5 v−

1
5 −1

5
u−

3
5 v−

6
5

−1
5
u−

6
5 v−

2
5 −2

5
u−

1
5 v−

7
5

∣

∣

∣

∣

∣

=
1

5
u−

9
5v−

8
5 .

Therefore,

Area of D =

∫∫

D

1dx dy =

∫∫

S

1

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv

=

∫∫

S

∣

∣

∣

∣

1

5
u−

9
5 v−

8
5

∣

∣

∣

∣

du dv

=

∫ 3

1

∫ 2

1

1

5
u−

9
5 v−

8
5du dv

=

∫ 3

1

1

5

(

u−
4
5

−4
5

)∣

∣

∣

∣

∣

2

1

v−
8
5dv

=

∫ 3

1

1 − 2−
4
5

4
v−

8
5dv

=
1

4

(

1 − 2−
4
5

) v−
3
5

−3
5

∣

∣

∣

∣

∣

3

1

=
5

12

(

1 − 2−
4
5

)(

1 − 3−
3
5

)

.

2
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2. Change of Variables in Triple Integrals.

If the change of variables

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)

gives a 1 − 1 transformation that maps a region S in the uvw–space onto a region

D in the xyz–space, then

dV (= dxdydz) =

∣

∣

∣

∣

∂(x, y, z)

∂(u, v, w)

∣

∣

∣

∣

dudvdw

and

∫∫∫

D

f(x, y, z)dxdydz =

∫∫∫

S

g(x(u, v, w), y(. . .), z(. . .))

∣

∣

∣

∣

∂(x, y, z)

∂(u, v, w)

∣

∣

∣

∣

dudvdw

Here the Jacobian
∂(x, y, z)

∂(u, v, w)
is given by the determinant

∂(x, y, z)

∂(u, v, w)
=

∣

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣

∣

∣

∣

∣

∣

.

Again the reason is that the cube with edges dx, dy, dz corresponds approxi-

mately to a parallelepiped with edges 〈 ∂x
∂u
du, ∂y

∂u
du, ∂z

∂u
du〉, 〈∂x

∂v
dv, ∂y

∂v
dv, ∂z

∂v
dv〉 and

〈 ∂x
∂w
dw, ∂y

∂w
dw, ∂z

∂w
dw〉 with volume

∣

∣

∣

∣

∣

∣

det





∂x
∂u
du ∂y

∂u
du ∂z

∂u
du

∂x
∂v
dv ∂y

∂v
dv ∂z

∂z
dv

∂x
∂w
dw ∂y

∂w
dw ∂z

∂w
dw





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

det





∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂z

∂x
∂w

∂y
∂w

∂z
∂w





∣

∣

∣

∣

∣

∣

du dv dw.

Example 5. If x = r cos θ, y = r sin θ, z = z, then

∂(x, y, z)

∂(r, θ, z)
=

∣

∣

∣

∣

∣

∣

cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

∣

∣

∣

∣

∣

∣

= r
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Example 6. If x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cosφ, then

∂(x, y, z)

∂(ρ, φ, θ)
=

∣

∣

∣

∣

∣

∣

sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ

sin φ sin θ ρ cosφ sin θ ρ sinφ cos θ

cos φ −ρ sinφ 0

∣

∣

∣

∣

∣

∣

= cosφ

∣

∣

∣

∣

ρ cosφ cos θ −ρ sin φ sin θ

ρ cosφ sin θ ρ sin φ cos θ

∣

∣

∣

∣

+ ρ sinφ

∣

∣

∣

∣

sinφ cos θ −ρ sin φ sin θ

sin φ sin θ ρ sin φ cos θ

∣

∣

∣

∣

= ρ2 cos2 φ sinφ+ ρ2 sin3 φ

= ρ2 sin φ(cos2 φ+ sin2 φ)

= ρ2 sin φ.

2
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Lecture 27 Triple Integrals in Cylindrical and Spher-

ical Coordinates

From the previous Lecture we know that for the change of variables x = r cos θ, y =

r sin θ, z = z, we have

∂(x, y, z)

∂(r, θ, z)
= r, dxdydz = rdrdθdz and

∫∫∫

D

f(x, y, z)dxdydz =

∫∫∫

S

f(r cos θ, r sin θ, z)rdrdθdz

Instead of viewing (r, θ, z) as coordinates of some rθz–space, it is more convenient

to view (r, θ, z) by their geometric meanings in the xyz–space, as indicated by the

following diagram. Since a cylinder is involved in the diagram, (r, θ, z) are called

the cylindrical coordinates of a point (x, y, z) in the xyz–space.

z

y

x

r

z

(x,y,z)

θ

Example 1. The following diagram shows a solid in the xyz–space whose cylin-

drical coordinates satisfy:

π

4
≤ θ ≤ π

2
, 1 ≤ r ≤ 2, 1 ≤ z ≤ 2.

z

y

x

The change of variables

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ
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gives the geometric meanings of ρ, φ, and θ as shown in the following diagram, and

(ρ, φ, θ) are called the spherical coordinates of a point (x, y, z) in the xyz–space.

From Lecture 26, we know

y

z

x

(x,y,z)

θ

ϕ ρ

∫∫∫

D

f(x, y, z)dxdydz =

∫∫∫

S

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) ρ2 sinφ dρ dφ dθ

Example 2. Find the volume of the solid bounded above by the sphere x2+y2+z2 =

4 and below by the cone z =
√

x2 + y2.

Solution The volume is

V =

∫∫∫

G

1 dV

where G denotes the given solid.

From a sketch of the solid, as shown below, we find that it can be described in

spherical coordinates by

S : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

4
, 0 ≤ ρ ≤ 2.

y

z

x
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Therefore,

V =

∫∫∫

G

1dV =

∫∫∫

S

1 · ρ2 sin φdρdφdθ

=

∫ 2π

0

∫ π
4

0

∫ 2

0

ρ2 sin φdρdφdθ

=

∫ 2π

0

∫ π
4

0

ρ3

3

∣

∣

∣

∣

∣

2

0

sin φdφdθ

=

∫ 2π

0

∫ π
4

0

8

3
sinφdφdθ

=

∫ 2π

0

8

3
(− cosφ)

∣

∣

∣

∣

∣

π
4

0

dθ

=

∫ 2π

0

4

3

(

1 −
√

2

2

)

dθ

=
8 − 4

√
2

3
π

2

Example 3 Evaluate

∫∫∫

G

z
√

x2 + y2dV where G is the solid enclosed by the

cylinder x2 + y2 = 1, the xy–plane and the paraboloid z = x2 + y2.

Solution By sketching the solid G,

we see that it can be

described by cylindrical coordinates

as follows:
y

z

x

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ r2

Denote S = {(r, θ, z) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ r2}. We have

∫∫∫

G

z
√

x2 + y2dV =

∫∫∫

S

z
√

r2 cos2 θ + r2 sin2 θrdr dθ dz

=

∫ 2π

0

∫ 1

0

∫ r2

0

zr2dzdrdθ

=

∫ 2π

0

∫ 1

0

z2

2

∣

∣

∣

∣

∣

r2

0

r2drdθ =

∫ 2π

0

∫ 1

0

r6

2
drdθ

=

∫ 2π

0

r7

14

∣

∣

∣

∣

∣

1

0

dθ =

∫ 2π

0

1

14
dθ =

π

7
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2

Remark. Note that the region G in Example 3 is a simple solid, with its projection

on the xy–plane R = {(x, y) : x2 + y2 ≤ 1}, and is between the xy–plane z = 0 and

the paraboloid z = x2 + y2. Therefore,

∫∫∫

G

z
√

x2 + y2dV =

∫∫

R

[

∫ x2+y2

0

z
√

x2 + y2dz

]

dA

=

∫∫

R

z2

2

∣

∣

∣

∣

∣

x2+y2

0

√

x2 + y2dA =

∫∫

R

1

2
(x2 + y2)

5
2dA

Now we use polar coordinates to calculate the double integral to obtain

∫∫

R

1

2
(x2 + y2)

5
2dA =

∫ 2π

0

∫ 1

0

1

2
r5 · rdrdθ

=

∫ 2π

0

r7

14

∣

∣

∣

∣

∣

1

0

dθ =

∫ 2π

0

1

14
dθ =

π

7
.

As a rule, it is always the case that when the cylindrical coordinates can be used

directly, one can also do the calculation by reducing it to a double integral first, and

then use polar coordinates to calculate the double integral.
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Lecture 28 Line Integrals

The remaining part of this unit is devoted to integral along curved lines and surfaces.

We start with line integrals. In fact there are two kinds of line integrals used

for different applications. Let C be a smooth curve in 2-space given by ~r(t) =

〈x(t), y(t)〉, a ≤ t ≤ b. We have encountred already one kind of line integrals over

C when we computed the arc length of C

ℓ =

∫

C

ds =

∫ b

a

√

[

dx

dt

]2

+

[

dy

dt

]2

dt.

A slightly more sophisticated version of this is needed to compute the mass of a thin

bent rod of the form C with a density distribution ρ(t). The corresponding integral

is

ℓ =

∫

C

ρ(x, y)ds =

∫ b

a

ρ(t)

√

[

dx

dt

]2

+

[

dy

dt

]2

dt.

In this situation we integrate a function along a curve.

Another kind of integral is needed for the following problem: Imagine that

an object is moved along the curve C against a force vector function ~F (x, y) =

〈f(x, y), g(x, y)〉. We are interested in the total work W performed (which is the

same as the amount of energy spent).

For a straight line C : x = αt, y = βt (a ≤ t ≤ b) the vector of replacement is

(b− a)〈α, β〉. If a constant force ~F = 〈f, g〉 is applied then the work done is the dot

product ~F · 〈α, β〉(b − a). On a curved line with changing force the work done is

approximated by the Riemann sum with partition a = t0 < t1 < · · · < tN = b.

W ≈
N
∑

n=1

~F (x(tn), y(tn)) ·
〈

dx

dt
(tn),

dy

dt
(tn)

〉

(tn − tn−1),

which tends to the integral

W =

∫ b

a

~F (x(t), y(t)) ·
〈

dx

dt
(t),

dy

dt
(t)

〉

dt =

∫

C

~F (x, y) · d~r,

where d~r =
d~r

dt
dt. This can be rewritten as an integral of the first kind

W =

∫

C

~F (x, y) · ~τ(x, y) ds,

where τ = ~r′

||~r′|| is the unit tangent vector of C and ds = ||~r′||dt is the arc length

element. In other words we integrate a vector field along the curve C by turning
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it into a function using the dot product with the unit tangent vector of C at each

point of C.

Notice that d~r =
d~r

dt
dt does not depend on the actual parametrisation of C. If u

was another parameter then, by chain rule,

d~r =
d~r

du
du =

d~r

dt

dt

du
du =

d~r

dt
dt.

This justifies the notation

W =

∫

C

~F (x, y) · d~r =

∫

C

f dx+ g dy.

The expression

f(x, y) dx+ g(x, y) dy

is called a 1-form, thus we integrate a 1-form along a curve C. We have encountred

1-forms before as total differentials

dF = Fx dx+ Fy dx.

Any total differential is a 1-form but not any 1-form is a total differential. We will

investigate this relation in the next Lecture.

Example 1. Find
∫

C
xy2dx−y3dy over the circular arc C : x = cos t, y = sin t, 0 ≤

t ≤ π
2
.

y

x

C

Solution. Using the parametrisation x = cos t, y = sin t we find dx = − sin t dt
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and dy = cos t dt. It follows

∫

C

xy2dx− y3dy =

∫ π
2

0

(cos t)(sin t)2(− sin t)dt−
∫ π

2

0

(sin t)3 cos tdt

=

∫ π
2

0

[

− cos t · sin3 t− cos t sin3 t
]

dt

= −2

∫ π
2

0

sin3 t cos tdt

= −2

∫ π
2

0

sin3 td sin t

= −2 · sin4 t

4

∣

∣

∣

∣

∣

π
2

0

= −1

2
.

2

The following properties about line integrals can be proved easily by the defini-

tion (please have a try):

(1) Line integrals do not change under different parametrizations of the curve C

as long as the parametrizations have the same orientation of the curve. If the

orientation is reversed, then the sign of the line integral is changed.

(2) If C consists of finitely many smooth curves C1, . . . , Cn, joined end to end,

then

∫

C

f dx+ gdy =
n
∑

k=1

∫

Ck

f dx+ g dy.

Example 2. If we parametrize the circular arc C in Example 1 by x = t, y =√
1 − t2, 0 ≤ t ≤ 1, then the orientation is reversed. If we denote by C ′ the same

arc but with the orientation determined

by this new parametrization, then, by

property

(1) above, we should have
∫

C′
xy2dx−y3dy = −

∫

C
xy2dx−y3cy = 1

2
.

Indeed, calculating directly,

y

x

C
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∫

C′

xy2dx− y3cy =

∫ 1

0

[

t(
√

1 − t2)2(t)′ − (
√

1 − t2)3(
√

1 − t2)′
]

dt

=

∫ 1

0

[

t(1 − t2) − (
√

1 − t2)3 −t√
1 − t2

]

dt

=

∫ 1

0

[

t(1 − t2) + t(1 − t2)
]

dt

= 2

(

t2

2
− t4

4

)

∣

∣

∣

∣

∣

1

0

= 2

(

1

2
− 1

4

)

=
1

2
.

2

The above discussion of line integrals in 2–spaces extends naturally to 3–spaces.

If ~r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b is the vector equation of a curve C in 3–space,

and ~F (x, y, z) = 〈f(x, y, z), g(x, y, z), h(x, y, z)〉 is a continuous vector function in a

region containing C, then we define

∫

C

~F (x, y, z) · d~r =

∫

C

f(x, y, z) dx+ g(x, y, z) dy + h(x, y, z) dz

=

∫ b

a

[f(x(t), y(t), z(t))x′(t) + g(x(t), y(t), z(t))y′(t) + h(x(t), y(t), z(t))z′(t)]dt

The same properties also hold for 3–space line integrals.

Example 3 Calculate
∫

C
xy dx+ z dy+(xy+ z)dz, where C is the boundary of the

triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), oriented in this order.

Solution C consists of three line segments C1, C2 and C3 with parametrizations

given by:

C1 : x =1 − t, y =t, z =0, 0 ≤ t ≤ 1

C2 : x =0, y =1 − t, z =t, 0 ≤ t ≤ 1

C3 : x =t, y =0, z =1 − t, 0 ≤ t ≤ 1
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y

x

z

C

C
C

1

2

3

Hence,

∫

C

xy dx+ z dy + (xy + z)dz

=
3
∑

k=1

∫

Ck

xy dx+ z dy + (xy + z)dz

=

∫ 1

0

{(1 − t)(t)(1 − t)′ + 0 · (t)′ + [(1 − t)t+ 0] · (0)′} dt

+

∫ 1

0

{(0)(1 − t)(0)′ + t(1 − t)′ + [(0)(1 − t) + t] (t)′} dt

+

∫ 1

0

{(t)(0)(t)′ + (1 − t)(0)′ + [(t)(0) + (1 − t)] (1 − t)′} dt

=

∫ 1

0

[−(1 − t)t− (1 − t)] dt

=

∫ 1

0

(t2 − 1)dt =

(

t3

3
− t

)

∣

∣

∣

∣

∣

1

0

= −2

3

2
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Lecture 29 Line Integrals Independent of Path

We know that the line integral
∫

C

f(x, y)dx+ g(x, y)dy =

∫

C

~F (x, y) · d~r

does not depend on the particular parametrization of the curve C as long as the

parametrization does not change the orientatin of C. In this lecture, we look at

conditions under which the line integral does not even depend on the curve as long

as the two end points are not changed.

For example, if C1 and C2 are as

shown in the diagram, where the

two end points of C1 and C2 are the same,

then a line integral independent of path

should have the same value over C1 and

C2.

C

C

1

2

Theorem 1 (The Fundamental Theorem of Line Integrals)

Suppose ~F (x, y) = f(x, y)~i+g(x, y)~j, where f and g are continuous in some open

region containing the two points (x0, y0) and (x1, y1). If there exists some function

φ(x, y) such that ~F (x, y) = ∇φ(x, y) at each point in this region,then for any smooth

curve C starting at (x0, y0), ending at (x1, y1), and lying entirely inside the region,

we have
∫

C

~F (x, y) · d~r = φ(x1, y1) − φ(x0, y0)

Note that in Theorem 1 the line integral is determined by φ and (x1, y1), (x0, y0)

only, and is independent of the curve C. Therefore, we say the line integral is inde-

pendent of path. Moreover, when ~F = ∇φ for some φ, we say ~F is conservative,

and φ is a potential for ~F . Notice that if φ is a potential for ~F , then so is φ + c,

where c is an arbitrary constant.

Proof of Theorem 1. Let x = x(t), y = y(t), a ≤ t ≤ b be a parametrization

of a smooth curve C starting at (x0, y0) and ending at (x1, y1), i.e., (x(a), y(a)) =

(x0, y0), (x(b), y(b)) = (x1, y1). Moreover, C lies entirely inside the region where
~F (x, y) = ∇φ(x, y). Then, as ~F (x, y) = f(x, y)~i+g(x, y)~j and ∇φ(x, y) = φx(x, y)~i+

φy(x, y)~j, we have

f(x, y) = φx(x, y), g(x, y) = φy(x, y)

and
∫

C

~F · d~r =

∫ b

a

[f(x(t), y(t))x′(t) + g(x(t), y(t))y′(t)]dt
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=

∫ b

a

[φx(x(t), y(t))x
′(t) + φy(x(t), y(t))y

′(t)]dt

=

∫ b

a

[

d

dt
φ(x(t), y(t))

]

dt

= φ(x(t), y(t))
∣

∣

∣

b

a
= φ(x(b), y(b)) − φ(x(a), y(a))

= φ(x1, y1) − φ(x0, y0)

2

Corollary. If C is closed and ~F is conservative in a region containing C, then

∫

C

~F · d~r = 0.

Example 1. Show that ~F (x, y) = 2xy3~i+ (1 + 3x2y2)~j is conservative.

Proof. We need to show that there exists a function φ(x, y) such that ∇φ(x, y) =
~F (x, y), i.e.

∂φ

∂x
= 2xy3,

∂φ

∂y
= 1 + 3x2y2.

From
∂φ

∂x
= 2xy3 we obtain

φ(x, y) =

∫

2xy3dx+ C(y)

= x2y3 + C(y)

where C(y) is some unknown function of y.

But we have
∂φ

∂y
= 1 + 3x2y2. Using φ(x, y) = x2y3 + C(y), we deduce,

∂φ

∂y
= 3x2y2 + C ′(y)

Therefore we should have C ′(y) = 1, or C(y) = y + C where C is an arbitrary

constant. Thus

φ(x, y) = x2y3 + y + C.

One easily checks that indeed we have

∇φ(x, y) = ∇(x2y3 + y + c) = 2xy3~i+ (3x2y2 + 1)~j

= ~F (x, y).
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2

The method used in the above example to check whether a given vector valued

function ~F (x, y) is conservative is usually difficult to use, especially if the function
~F is complicated, like ~F (x, y) = sin(xy)ex~i + ecos(xy)~j. In the following, we are to

find an easier method. For this purpose, we need a few new notions.

Simple curve: A plane curve ~r = ~r(t)(a ≤ t ≤ b) is said simple if it does not

intersect itself between the end points.

Simple Curves Non-simple Curves

Simply Connected Region: A plane region whose boundary consists of one

simple closed curve is called a simply connected region. The entire xy-plane is

regarded as a simply connected region (it has no boundary).

Simply Connected Not Simply Connected

Theorem 3. Let ~F (x, y) = f(x, y)~i + g(x, y)~j, where f and g have continuous

partial derivatives in an open simply connected region. Then ~F is conservative in

that region if and only if
∂f

∂y
=
∂g

∂x
in that region.

Proof. We only prove the theorem for the simple case that the region is a rectangle

a < x < b, c < y < d.

To show the necessity, we assume that ~F is conservative, i.e. ~F = ∇φ for some

φ for all (x, y) in the region.

Then f =
∂φ

∂x
,
∂f

∂y
=

∂2φ

∂y∂x
, g =

∂φ

∂y
,
∂g

∂x
=

∂2φ

∂x∂y

By a theorem on the mixed partial derivatives (please find this theorem), we
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have
∂2φ

∂x∂y
=

∂2φ

∂y∂x
.

Hence
∂f

∂y
=
∂g

∂x
.

Notice that for this part of the proof no assumptions on the region have been used.

Now we show the sufficiency. Suppose that
∂f

∂y
=
∂g

∂x
.

Choose an arbitrary point (x0, y0) in the rectangular region, and define

φ(x, y) =

∫ x

x0

f(t, y)dt+

∫ y

y0

g(x0, s)ds

Then

∂φ

∂x
= f(x, y)

∂φ

∂y
=

∫ x

x0

∂

∂y
f(t, y)dt+ g(x0, y)

=

∫ x

x0

∂

∂x
g(t, y)dt+ g(x0, y)

(

using
∂f

∂y
=
∂g

∂x

)

= g(t, y)
∣

∣

x
x0

+ g(x0, y)

= g(x, y) − g(x0, y) + g(x0, y)

= g(x, y)

Hence ∇φ = ~F .

2

Example 2. A particle moves over the semicircle C : ~F (t) = cos t~i + sin t~j, 0 ≤
t ≤ π while subject to the force ~F (x, y) = ey~i+ xey~j. Find the work done.

Solution. We have f(x, y) = ey, g(x, y) = xey and

∂f

∂y
= ey =

∂g

∂x

-1 1
x

y

C

C1
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Therefore, the work done W =

∫

C

~F · d~r does not depend on the path.

Let C1 : x = 1 − t, y = 0, 0 ≤ t ≤ 2 be the line segment joining (1, 0) and

(−1, 0). Then
∫

C

~F · d~r =

∫

C1

~F · d~r

=

∫ 2

0

[

e0 · (1 − t)′ + (1 − t)e0 · (0)′
]

dt

=

∫ 2

0

−1dt = −2.

2

Note. In Example 2, if we have used the original path C for the calculation, we

would need to find
∫ π

0

[

esin t(cos t)′ + cos tesin t(sin t)′
]

dt

=

∫ π

0

esin t(− sin t+ cos2 t)dt,

which is very difficult to integrate.
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Lecture 30 Green’s Theorem

Recall from Lecture 29 that if
∂f

∂y
=
∂g

∂x
on a simply connected domain, then ~F =

f~i + g~j is conservative, and therefore for any simple closed curve C (lying entirely

in the region where ~F is conservative),

∫

C

f(x, y)dx+ g(x, y)dy = 0. We will see in

this lecture that this fact also follows from a more general result, known as Green’s

Theorem, which establishes an important relationship between line integrals and

double integrals.

Theorem 1 (Green’s Theorem). Let R be a simply connected plane region whose

boundary is a simple, closed, piecewise smooth curve C oriented counterclockwise.

If f(x, y) and g(x, y) have continuous first order partial derivatives on some set

containing R, then

∫

C

f(x, y)dx+ g(x, y)dy =

∫∫

R

(

∂g

∂x
− ∂f

∂y

)

dA

C

R

Proof. We only prove the theorem for the case that R is both a type I and type II

region. So R can be described by both

g1(x) ≤ y ≤ g2(x), a ≤ x ≤ b (type I region)

and

h1(y) ≤ x ≤ h2(y), c ≤ y ≤ d (type II region)
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x x

yy

a b

y=g (x)

y=g

d

c

x=h (y)

(y)1x=h

1

2

(x)
2

We have,
∫∫

R

∂g

∂x
dA =

∫ d

c

∫ h2(y)

h1(y)

∂g

∂x
dxdy =

∫ d

c

[g(h2(y), y)− g(h1(y), y)]dy

=

∫ d

c

[g(h2(t), t) − g(h1(t), t)] dt.

Let C1 be the part of C parametrized by

x = h1(t), y = t, c ≤ t ≤ d

Then
∫

C1

g(x, y)dy =

∫ d

c

g(h1(t), t)(t)
′dt =

∫ d

c

g(h1(t), t)dt

Let C2 be the remaining part of C which is parametrized by

x = h2(t), y = t, c ≤ t ≤ d.

Then
∫

C2

g(x, y)dy =

∫ d

c

g(h2(t), t)(t)
′dt =

∫ d

c

g(h2(t), t)dt.

If we denote by −C1 the curve C1 but with the orientation reversed, then C =

(−C1) ∪ C2 (the union of −C1 and C2), and hence
∫

C

g(x, y)dy =

∫

−C1

g(x, y)dy +

∫

C2

g(x, y)dy

= −
∫ d

c

g(h1(t), t)dt+

∫ d

c

g(h2(t), t)dt

=

∫ d

c

[g(h2(t), t) − g(h1(t), t)] dt

=

∫∫

R

∂g

∂x
dA.
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In a similar fashion,
∫∫

R

∂f

∂y
dA =

∫ b

a

∫ g2(x)

g1(x)

∂f

∂y
dy dx

=

∫ b

a

[f(x, g2(x)) − f(x, g1(x)] dx

=

∫ b

a

[f(t, g2(t)) − f(t, g1(t))] dt

On the other hand, let C1 = {(x, y) : x = t, y = g1(t), a ≤ t ≤ b} and C2 =

{(x, y) : x = t, y = g2(t), a ≤ t ≤ b}

Then

∫

C1

f(x, y)dx =

∫ b

a

f(t, g1(t))dt

∫

C2

f(x, y)dx =

∫ b

a

f(t, g2(t))dt

and C = (C ′) ∪ (−C2). Hence
∫

C

f(x, y)dx =

∫

C1

f(x, y)dx+

∫

−C2

f(x, y)dx

=

∫ b

a

f(t, g1(t))dt−
∫ b

a

f(t, g2(t))dt

= −
∫ b

a

[f(t, g2(t)) − f(t, g1(t)] dt

= −
∫∫

R

∂f

∂y
dA

Finally, we obtain
∫

C

f(x, y)dx+ g(x, y)dy =

∫∫

R

∂g

∂x
dA−

∫∫

R

∂f

∂y
dA

=

∫∫

R

(

∂g

∂x
− ∂f

∂y

)

dA.

2

Example 1 Use Green’s Theorem to evaluate

∫

C

xy2dx+ 2x2y dy, where C is the

boundary of the triangle with vertices (0, 0), (1, 0) and (1, 1), oriented in that order.
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Solution. R can be described by

0 ≤ x ≤ 1, 0 ≤ y ≤ x.

Therefore, by Green’s theorem,

y

x

(1,1)

(1,0)(0,0)

∫

C

xy2dx+ 2x2ydy =

∫∫

R

[

∂

∂x
(2x2y) − ∂

∂y
(xy2)

]

dA

=

∫∫

R

(4xy − 2xy)dA =

∫∫

R

2xydA

=

∫ 1

0

∫ x

0

2xydydx =

∫ 1

0

xy2 |x0dx

=

∫ 1

0

x3dx =
x4

4

∣

∣

∣

1

0
=

1

4
.

2

Example 2. Find the area enclosed by the ellipse

x2

a2
+
y2

b2
= 1

Solution Area =
∫ ∫

R

1 dA.

Let C denote the ellipse oriented counterclockwise. We deduce from Green’s

Theorem that

∫

C

x dy =

∫

C

x dy + 0 dx =

∫∫

R

[

∂

∂x
(x) − ∂

∂y
(0)

]

dA =

∫∫

R

1 dA

∫

C

y dx =

∫

C

y dx+ 0 dy =

∫∫

R

[

∂

∂x
(0) − ∂

∂y
(y)

]

dA = −
∫∫

R

1 dA

Therefore

Area =

∫

C

x dy = −
∫

C

y dx

If we use the parametrization x = a cos t, y = b sin t, 0 ≤ t ≤ 2π for C, then
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Area =

∫ 2π

0

a cos t(b sin t)′dt

=

∫ 2π

0

ab cos2 t dt

=

∫ 2π

0

ab
1 + cos 2t

2
dt

=
ab

2

(

t− 1

2
sin 2t

)

|2π
0

=
ab

2
· 2π = abπ.

2

Note that in Example 1, we used a double integral to calculate a line integral,

while in Example 2, a double integral was calculated by a line integral. Please try

both integrals directly and see which method is simpler.

There is a nice way to formulate Green’s theorem using the language of 1-forms

and 2-forms. We have introduced 1-forms a expressions of the form f(x, y) dx +

g(x, y) dy (in 2-space) or f(x, y, z) dx+ g(x, y, z) dy + h(x, y, z) dz (in 3-space).

2-forms are expressions of the form φ(x, y) dxdy (in 2-space) or φ(x, y, z) dxdy+

ψ(x, y, z) dzdx+χ(x, y, z) dydz. The ‘products’ dxdy etc. are not commutative but

follow the rule dydx = −dxdy. This is often emphasised by the notation dx ∧ dy.

In particular, dx ∧ dx = −dx ∧ dx = 0

The ‘differential operator’ d applied to a 1-form gives

d(f dx+ g dy) = (fxdx+ fydy) ∧ dx+ (gxdx+ gydy) ∧ dy = (−fy + gx)dx ∧ dy
d(f dx+ g dy + h dz) = (−fy + gx)dx ∧ dy + (fz − hx)dz ∧ dx+ (−gz + hy)dy ∧ dz

Now, the necessary condition for the vector field ~F = 〈f, g〉 being conservative

can be expressed in terms of the corresponding 1-form f dx+ g dy by

d(f dx+ g dy) = (−fy + gx)dx ∧ dy = 0.

Green’s theorem can now be stated as
∫

C

f dx+ g dy =

∫

R

d(f dx+ g dy) =

∫

R

(−fy + gx)dx ∧ dy,

where C is the boundary of R. In other words, the integral of a 1-form over the

boundary of a simply connected domain equals the integral of the d differential of

the form over the domain itself.
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Lecture 31 Surface Integrals

Recall that the surface area of the part of surface z = f(x, y) lying directly above

or below the region R in the xy-plane is given by

Area =

∫∫

R

√

f 2
x + f 2

y + 1dA.

If we want to find the mass of a curved lamina with equation z = f(x, y), (x, y) ∈ R

and density δ(x, y, z), then we need to calculate the integral

∫∫

R

δ(x, y, z)
√

f 2
x + f 2

y + 1dA

=

∫∫

R

δ(x, y, f(x, y))
√

f 2
x + f 2

y + 1dA

which gives the mass.

In general, let σ be a surface z = f(x, y) and R the projection of σ on the xy-

plane. If f(x, y) has continuous first order partial derivatives on R and g(x, y, z) is

continuous on σ, then the surface integral is defined by

∫∫

σ

g(x, y, z)dS =

∫∫

R

g(x, y, f(x, y))
√

f 2
x + f 2

y + 1 dA

If σ is given by y = f(x, z) and R is the projection of σ on the xz-plane, then

similarly,

∫∫

σ

g(x, y, z)dS =

∫∫

R

g(x, f(x, z), z)
√

f 2
x + f 2

z + 1 dA

If σ is given by x = f(y, z) and R is the projection of σ on the yz-plane, then

∫∫

σ

g(x, y, z)dS =

∫∫

R

g(f(y, z), y, z)
√

f 2
y + f 2

z + 1 dA

The following properties of surface integrals follow directly from the definition:
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∫∫

σ

cg(x, y, z) dS = c

∫∫

σ

g(x, y, z) dS, c is a constant

∫∫

σ

(g1 ± g2) dS =

∫∫

σ

g1 dS ±
∫∫

σ

g2 dS

∫∫

σ

g dS =

∫∫

σ1

g dS +

∫∫

σ2

g dS

where σ consists of σ1 and σ2.

Example 1. Evaluate the surface integral

∫∫

σ

xy dS, where σ is the part of the

plane x+ y + z = 1 that lies in the first octant.

Solution. A sketch of σ shows that its projection on the xy-plane can be

expressed by

R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

y

x

z

σ

y

x

R

Moreover, the equation of σ can be written as z = 1 − x− y. Therefore,

∫∫

σ

xy dS =

∫∫

σ

xy

√

(

∂z

∂x

)2

+

(

∂z

∂y

)2

+ 1 dA

=

∫∫

R

xy
√

(−1)2 + (−1)2 + 1 dA =

∫∫

R

√
3xy dA

=

∫ 1

0

∫ 1−x

0

√
3xy dy dx =

∫ 1

0

√
3x
y2

2

∣

∣

∣

1−x

0
dx

=

∫ 1

0

√
3x

(1 − x)2

2
dx

=

√
3

24
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2

Example 2. Evaluate the surface integral

∫∫

σ

(x2 + y2)z dS, where σ is the portion

of the sphere x2 + y2 + z2 = 4 above the plane z = 1.

Solution. The plane z = 1 and the sphere x2+y2+z2 = 4 intersect at x2+y2 = 3,

z = 1, which is a circle 1 unit above the xy-plane, with centre on the z-axis, and

radius
√

3.

y

z

x

The equation of σ can be rewritten as z =
√

4 − x2 − y2 and the projection of

σ on the xy-plane is the disk x2 + y2 ≤ 3, or

R : 0 ≤ θ ≤ 2π, 0 ≤ r ≤
√

3 (in polar coordinates).

Therefore,

∫∫

σ

(x2 + y2)z dS =

∫∫

R

(x2 + y2)
(

√

4 − x2 − y2
)

√

(

∂z

∂x

)2

+

(

∂z

∂y

)2

+ 1 dA

=

∫∫

R

(x2 + y2)
√

4 − x2 − y2

√

√

√

√

(

−x
√

4 − x2 − y2

)2

+

(

−y
√

4 − x2 − y2

)2

+ 1 dA

=

∫∫

R

(x2 + y2)
√

4 − x2 − y2

√

4

4 − x2 − y2
dA

=

∫∫

R

2(x2 + y2) dA

=

∫ 2π

0

∫

√
3

0

2r2 rd rd θ

=

∫ 2π

0

2
r4

4

∣

∣

∣

√
3

0
dθ =

∫ 2π

0

9

2
dθ = 9π.

2
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Lecture 32 Surface Integrals of Vector Functions

Surface integrals also occur in calculations of the volume of fluid which passes

through a certain surface σ.

Suppose
~F (x, y, z) = f(x, y, z)~i+ g(x, y, z)~j + h(x, y, z)~k

is the velocity of the fluid at a point (x, y, z), and ~n = ~n(x, y, z) is the unit normal

vector of σ at (x, y, z). Then the volume of fluid that passes through σ per unit

time is given by

V =

∫∫

σ

~F · ~n dS

If the surface σ is given by G(x, y, z) = 0, then we know

∇G(x, y, z)

||∇G(x, y, z)||

is a unit normal vector of σ at (x, y, z). Clearly,

−∇G(x, y, z)

||∇G(x, y, z)||

is also a unit normal vector.

A surface is called orientable if a unit vector can be constructed at each point

of the surface such that the vectors vary continuously as we traverse any curve on

the surface.

A surface is said to be oriented if such a set of unit normal vectors is con-

structed. For example, if the surface is the unit sphere, then it is orientable, with

one orientation has all the unit normal vectors pointing outward the sphere, and

the other has all the unit normal vectors pointing inward the sphere. Usually, an

orientable surface has exactly two orientations.

There is a famous surface which is not orientable, i.e. the Möbius strip, as
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shown in the following diagram.

To help us describing orientations of surfaces, we say the vector ~u = a~i+ b~j + c~k is

pointing upward if c > 0, rightward if b > 0 and forward if a > 0. This describes the

situation if the xyz-coordinate system is drawn (as usual) so that the z-axis points

upward, y-axis points rightward and x-axis points forward.

Example 1 Find all the upward unit normals for z = x2 + y2.

Solution Let G(x, y, z) = x2 + y2 − z. Then ∇G(x, y, z) = 2x~i+ 2y~j − ~k

∇G
||∇G|| =

2x~i+ 2y~j − ~k
√

4x2 + 4y2 + 1
=

2x
√

4x2 + 4y2 + 1
~i+

2y
√

4x2 + 4y2 + 1
~j− 1
√

4x2 + 4y2 + 1
~k

We know
∇G

||∇G|| is a unit normal for G = 0, i.e. z = x2 + y2. Since the last

component of
∇G

||∇G|| is − 1
√

4x2 + 4y2 + 1
< 0, it points downward. However,

−∇G
||∇G|| =

−2x
√

4x2 + 4y2 + 1
~i+

−2y
√

4x2 + 4y2 + 1
~j +

1
√

4x2 + 4y2 + 1
~k

is also a unit normal vector, and it points upward. As x, y varies, it gives all the

upward unit normals for the surface. 2

As each component of
−∇G
||∇G|| in Example 1 is a continuous function of (x, y),

these unit vectors vary continuously with (x, y). Hence
−∇G
||∇G|| gives an orientation

of the surface. The other orientation is given by
∇G

||∇G|| , the downward unit vectors.

Example 2. Suppose that σ is the portion of the surface (paraboloid) z = 1−x2−y2
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above the xy-plane. Let σ be oriented by upward normals and let ~F (x, y, z) =

y~i+ x~j + z~k. Evaluate

∫∫

σ

~F · ~n dS.

Solution. The equation of the surface can be rewritten as

G(x, y, z) = z − 1 + x2 + y2 = 0

∇G = 2x~i+ 2y~j + ~k,
∇G

||∇G|| =
2x

√

4x2 + 4y2 + 1
~i+

2y
√

4x2 + 4y2 + 1
~j +

1
√

4x2 + 4y2 + 1
~k

As
1

√

4x2 + 4y2 + 1
> 0, the normal vector

∇G
||∇G|| points upward.

Hence,

~n =
∇G

||∇G|| =
2x

√

4x2 + 4g2 + 1
~i+

2y
√

4x2 + 4y2 + 1
~j +

1
√

4x2 + 4y2 + 1
~k

~F · ~n =
2xy

√

4x2 + 4y2 + 1
+

2xy
√

4x2 + y2 + 1
+

z
√

4x2 + 4y2 + 1

=
4xy + z

√

4x2 + 4y2 + 1

A sketch of σ shows its projection on the xy-plane is the disk x2 + y2 ≤ 1, or

R : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 in polar coordinates.

z=1-x 2 -y 2

z

y

x
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Therefore,
∫∫

σ

~F · ~n ds =

∫∫

σ

4xy + z
√

4x2 + 4y2 + 1
dS

=

∫∫

R

4xy + (1 − x2 − y2)
√

4x2 + 4y2 + 1

√

[

∂

∂x
(1 − x2 − y2)

]2

+

[

∂

∂y
(1 − x2 − y2)

]2

+ 1 dA

=

∫∫

R

4xy + 1 − x2 − y2

√

4x2 + 4y2 + 1

√

(2x)2 + (2y)2 + 1 dA

=

∫∫

R

(4xy + 1 − x2 − y2) dA

=

∫ 2π

0

∫ 1

0

[4(r cos θ)(r sin θ) + 1 − r2]r dr dθ

=

∫ 2π

0

(

r4 cos θ sin θ +
r2

2
− r4

4

)

∣

∣

∣

1

0
dθ

=

∫ 2π

0

(

cos θ sin θ +
1

4

)

dθ

=

(

sin2 θ

2
+
θ

4

)

∣

∣

∣

2π

0
=
π

2
.

2

We may look at the integral
∫∫

σ

~F · ~n dS

also in the following way: First assume that ~F = 〈0, 0, h〉 and σ is given as a graph

z = φ(x, y). Then ~n =
〈−φx,−φy, 1〉
√

φ2
x + φ2

y + 1
and

∫∫

σ

~F · ~n dS =

∫∫

σz

h(x, y, φ(x, y))
1

√

φ2
x + φ2

y + 1

√

φ2
x + φ2

y + 1dxdy =

∫∫

σz

h dxdy,

where σz is the projection of σ to the xy-plane. Similarly, for g = h = 0 and

f = h = 0 we get
∫∫

σ

~F · ~n dS =

∫∫

σx

f dydz,

∫∫

σ

~F · ~n dS =

∫∫

σy

g dzdx.

Combining this we obtain a formula for general ~F
∫∫

σ

~F · ~n dS =

∫∫

σ

f dy ∧ dz + g dz ∧ dx+ h dx ∧ dy.
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We recognise that

f dy ∧ dz + g dz ∧ dx+ h dx ∧ dy

as a 2-form and use ∧ for the product of the differentials to emphasise the non-

commutativity of this product.
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Lecture 33 The Divergence Theorem

Recall that Green’s Theorem relates a line integral with a double integral where

the integrand of the double integral consists of certain partial derivatives of the

integrands in the line integral, and the curve in the line integral is the boundary of

the region in the double integral:

∫

C

f(x, y)dx+ g(x, y)dy =

∫∫

R

(

∂g

∂x
− ∂f

∂y

)

dA

Notice that Green’s formula can also be written as

∫

C

〈f, g〉 · ~n ds =

∫

C

〈−g, f〉 · d~r =

∫∫

R

(

∂f

∂x
+
∂g

∂y

)

dA,

where ~n is the outer unit normal to C and ~n ds = 〈dy,−dx〉.

There is a similar relationship between surface integrals and triple integrals,

known as the Divergence theorem.

Given a vector-valued function ~F (x, y, z) = f(x, y, z)~i+ g(x, y, z)~j + h(x, y, z)~k,

the divergence of ~F , denoted by div ~F (x, y, z), is defined by the following formula,

div ~F (x, y, z) = fx(x, y, z) + gy(x, y, z) + hz(x, y, z),

or,

div ~F = ∂f
∂x

+ ∂g
∂y

+ ∂h
∂z

Theorem 1 (The Divergence Theorem). Let G be a solid whose boundary is

an orientable surface σ and is oriented with all the unit normals pointing outward

of G. If

~F (x, y, z) = f(x, y, z)~i+ g(x, y, z)~j + h(x, y, z)~k

has all its component functions f, g, h with continuous first order partial derivatives

on some open set containing G, then
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∫∫

σ

~F · ~ndS =

∫∫∫

G

div ~FdV

When G is simple, a proof of this theorem can be found in the reference books,

which is in the spirit of the proof of Green’s Theorem. However, for a general G,

the proof is difficult.

Apart from its theoretical importance, the divergence theorem sometimes pro-

vides a way to simplify the calculation of surface or triple integrals.

Again, the divergence theorem can be nicely expressed in terms of differential

forms: The surface integral at the left hand side equals
∫∫

σ

f dy ∧ dz + g dz ∧ dx+ h dx ∧ dy.

Now,

d(f dy ∧ dz + g dz ∧ dx+ h dx ∧ dy) = (fx + gy + hz)dx ∧ dy ∧ dz = div ~FdV.

Hence,
∫∫

σ

f dy ∧ dz + g dz ∧ dx+ h dx ∧ dy =

∫∫∫

G

d(f dy ∧ dz + g dz ∧ dx+ h dx ∧ dy),

i.e., similar to Green’s theorem, the integral of a 2-form over the boundary of a

domain equals the volume integral of the d derivative of the 2-form over the domain

itself.

Example 1 Let ~r = x~i + y~j + z~k and σ the surface of a solid G oriented by

outward unit normals. Show that

vol(G) =
1

3

∫∫

σ

~r · ~ndS

where vol (G) denotes the volume of G.

Proof. By the divergence theorem,
∫∫

σ

~r · ~ndS =

∫∫∫

G

div~r dV

But clearly div ~r = 3. Hence
∫∫

σ

~r · ~ndS =

∫∫∫

G

3dV = 3vol(G)
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i.e.

vol(G) =
1

3

∫∫

σ

~r · ~ndS.

2

Remark. A variant of the above proof shows that if ~r1 = x~i+0~j+0~k, ~r2 = 0~i+y~j+0~k

and ~r3 = 0~i+ 0~j + z~k, then

vol(G) =

∫∫

σ

~rm · ~ndS, m = 1, 2, 3

Example 2. Find
∫∫

σ

~F · ~ndS where ~F = y~i + x~j + z~k and σ is the unit sphere

x2 + y2 + z2 = 1 oriented with outward unit normals.

Solution. We want to use the divergence theorem to transform the surface integral

to a triple integral. We first compute the divergence of ~F :

div ~F =
∂

∂x
(y) +

∂

∂y
(x) +

∂

∂z
(z) = 1

The unit sphere σ is the boundary of the unit ball B given by x2 + y2 + z2 ≤ 1.

Thus, by the divergence theorem,

∫∫

σ

~f · ~nds =

∫∫∫

B

div ~FdV =

∫∫∫

B

1dV = vol(B) =
4π

3
.

2

Example 3 Evaluate

∫∫

σ

~F · ~ndS, where

~F (x, y, z) = xy~i+ (y2 + exz2

)~j + sin(xy)~k

and σ is the surface of the region G bounded by the parabolic cylinder z = 1 − x2

and the planes z = 0, y = 0, and y + z = 2, and σ is oriented by outward normals.

Solution. A sketch of G shows that σ consists of four pieces of smooth surfaces,

and a direct calculation of the surface integral would involve calculating four surface

integrals corresponding to each piece. Therefore, we use the divergence theorem to

reduce it to a triple integral.

Let R be the projection of G on the xz-plane. Then G can be expressed by

0 ≤ y ≤ 2 − z, (x, z) ∈ R,
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z

y

x

y=2-z

2z=1-x

and R can be expressed by

0 ≤ z ≤ 1 − x2, −1 ≤ x ≤ 1

Therefore,

∫∫

σ

~F · ~n dS =

∫∫∫

G

div ~F dV

=

∫∫∫

G

(y + 2y + 0) dV =

∫∫∫

G

3y dV

=

∫∫

R

∫ 2−z

0

3y dy dA

=

∫∫

R

3

2
y2
∣

∣

∣

2−z

0
dA

=

∫∫

R

3

2
(2 − z)2 dA

=

∫ 1

−1

∫ 1−x2

0

3

2
(2 − z)2 dz dx

=

∫ 1

−1

−1

2
(2 − z)3

∣

∣

∣

1−x2

0
dx

=

∫ 1

−1

1

2

[

23 − (1 + x2)3
]

dx

=

∫ 1

−1

1

2
(7 − x6 − 3x4 − 3x2) dx

=
184

35

2
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Lecture 34 Stokes’ Theorem

Recall that Green’s Theorem relates line integrals with double integrals, and the

Divergence theorem relates surface integrals with triple integrals. The following

theorem, known as Stokes’ Theorem, will give a relationship between line integrals

and surface integrals.

To state Stokes’ theorem, we need one new notion. If

~F (x, y, z) = f(x, y, z)~i+ g(x, y, z)~j + h(x, y, z)~k,

then the curl of ~F is defined by

curl ~F =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

f g h

∣

∣

∣

∣

∣

∣

∣

=

(

∂h

∂y
− ∂g

∂z

)

~i−
(

∂h

∂x
− ∂f

∂z

)

~j +

(

∂g

∂x
− ∂f

∂y

)

~k

Note that, in the above notation, the determinant is used to help with remem-

bering the formula, it does not give a number, instead, it gives a vector. (Compare

with the notation in the definition of cross product). Also,
∂

∂x
,
∂

∂y
,
∂

∂z
are never

numbers or functions.

Theorem 1 (Stokes’ Theorem) Let σ be an oriented surface, bounded by a

simple curve C. If the components of ~F = f~i+ g~j + h~k have continuous first order

partial derivatives on some open set containing σ, then

∫

C

~F · d~r =

∫∫

σ

(curl ~F ) · ~n dS,

where the line integral is taken in the positive direction of C, and the positive

direction of C is determined in the following way:

If one moves the unit normal vector of σ (that determines the orientation of σ) along

C in the positive direction, then the surface σ lies on the left side of the moving unit
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normal vector.

While we do not prove Stokes’ theorem whose proof is very involved, we will see

through examples how it can be used.

Again, Stoke’s theorem can be reformulated in terms of differential forms: The

integral at the left hand side is

∫

C

f dx+ g dy + h dz.

Now

d(f dx+ g dy + h dz) = (−fy + gx)dx ∧ dy + (−gz + hy)dy ∧ dz + (fz − hx)dz ∧ dx,

and therefore

∫∫

σ

(curl ~F ) · ~n dS =

∫∫

σ

d(f dx+ g dy + h dz).

Again, the theorem states that the integral of a 1-form over the boundary of a

surface equals to the d-derivative of the 1-form over the surface itself.

Example 1. Verify Stoke’s theorem by computing

∫

C

~F · d~r and

∫∫

σ

(curl ~F ) · ~n dS,

where ~F = x2~i + y2~j + z2~k, σ is the portion of the cone z =
√

x2 + y2 below the

plane z = 1, and oriented by upward unit normals.

Solution. By sketching σ we see

that the boundary of σ is

C : x2 + y2 = 1, z = 1,

i.e., the unit circle one unit above the xy-

plane.

z

x

y

C

σ
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The following parametrization of C : ~r = cos θ~i+sin θ~j+~k, 0 ≤ θ ≤ 2π is in the

positive direction of C. Therefore,

∫

C

~F · d~r =

∫ 2π

0

[

(cos θ)2 (cos θ)′ + (sin θ)2 (sin θ)′ + (1)2 (1)′
]

dθ

=

∫ 2π

0

[

(cos θ)2 (cos θ)′ + (sin θ)2 (sin θ)′
]

dθ

=

(

cos3 θ

3
+

sin3 θ

3

)

∣

∣

∣

2π

0
= 0.

On the other hand,

curl ~F =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

x2 y2 z2

∣

∣

∣

∣

∣

∣

∣

=

(

∂

∂x
z2 − ∂

∂z
y2

)

~i+

(

∂

∂z
x2 − ∂

∂x
z2

)

~j +

(

∂

∂x
y2 − ∂

∂y
x2

)

~k

= ~0

Hence

(curl~F ) · ~n = ~0 · ~n = 0
∫∫

σ

(curl ~F ) · ~n dS =

∫∫

σ

0 dS = 0 =

∫

C

~F · d~r.

2

Example 2. Use Stokes’ theorem to evaluate

∫

C

~F · d~r, where C is the intersection

of the paraboloid z = x2 + y2 and the plane z = y with counterclockwise orientation

when looked down the positive z-axis, where ~F = xy~i+ x2~j + z2~k.

Solution. Let σ be the portion of the

paraboloid cut off by the plane z = y,

and let σ be oriented by upward unit nor-

mals.

Then by Stokes’ Theorem,
∫

C
~F · d~r =

∫∫

σ

(curl ~F ) · ~n ds. x y

z

C

σ
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curl ~F =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

xy x2 z2

∣

∣

∣

∣

∣

∣

∣

=

(

∂

∂y
(z2) − ∂

∂z
(x2)

)

~i+

(

∂

∂z
(xy) − ∂

∂x
(z2)

)

~j +

(

∂

∂x
(x2) − ∂

∂y
(xy)

)

~k

= (2x− x)~k = x~k

Let G(x, y, z) = z − x2 − y2 = 0 denote the equation of the paraboloid. Then

∇G(x, y, z) = −2x~i− 2y~j + ~k

gives an upward normal.

Hence

~n =
∇G

||∇G|| =
−2x

√

4x2 + 4y2 + 1
~i+

−2y
√

4x2 + 4y2 + 1
~j +

1
√

4x2 + 4y2 + 1
~k,

and

(curl ~F ) · ~n =
x

√

4x2 + 4y2 + 1
.

The projection of σ on the xy-plane is the region enclosed by the projection of

C on the xy-plane, the latter has the equation y = x2 +y2, i.e. x2 +

(

y − 1

2

)2

=
1

4
.

Thus the projection of σ on the xy-plane is the disk R : x2 +

(

y − 1

2

)2

≤ 1

4
. We

can regard R as a type II region expressed by

R : −

√

1

4
−
(

y − 1

2

)2

≤ x ≤

√

1

4
−
(

y − 1

2

)2

, 0 ≤ y ≤ 1.

Therefore,
∫∫

σ

(curl ~F ) · ~n dS =

∫∫

σ

x
√

4x2 + 4y2 + 1
dS

=

∫∫

R

x
√

4x2 + 4y2 + 1

√

f 2
x + f 2

y + 1 dA (z = f(x, y) = x2 + y2 is the equation for σ)

=

∫∫

R

x dA =

∫ 1

0

∫

√
1
4
−(y− 1

2
)2

−
√

1
4
−(y− 1

2
)2
x dx dy

=

∫ 1

0

x2

2

∣

∣

∣

√
1
4
−(y− 1

2
)2

−
√

1
4
−(y− 1

2
)2
dy =

∫ 1

0

0 dy = 0

2



162

Lecture 35 Applications

Given a vector valued function

~F (x, y, z) = f(x, y, z)~i+ g(x, y, z)~j + h(x, y, z)~k,

in order to state the Divergence theorem and Stokes’ theorem, we introduced func-

tions

div ~F = fx + gy + hz

and

curl ~F =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

f g h

∣

∣

∣

∣

∣

∣

∣

It is important to understand the physical meaning of div ~F and curl ~F . In fact,

the identities consisting of the Divergence and Stokes’ Theorems were first obtained

from physical considerations.

If ~F (x, y, z) stands for the velocity of certain fluid, then the physical meaning

of the surface integral

∫∫

σ

~F · ~n dS is the flux of the flow ~F across σ, which

represents the net volume of fluid that passes through σ per unit of time.

By the Divergence Theorem,
∫∫

σ

~F · ~n dS =

∫∫∫

G

div ~F dV

Hence

∫∫∫

G

div ~F dV also represents the flux of the flow ~F across the surface of G

(i.e. σ).

Recall that if the density of a solid G is ρ(x, y, z), then

Mass of G =

∫∫∫

G

ρ(x, y, z) dv

Therefore, in a similar fashion,

Flux of ~F =

∫∫∫

G

div ~F dv
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and div ~F is the flux density of ~F .

curl~F (x, y, z) is more difficult to explain, and we just mention that it measures

how the flow ~F rotates near (x, y, z).

Example 1. The flow of the vector field

~F (x, y, z) = −y~i+ x~j + 0~k

is x = A cos(t + t0), y = A sin(t + t0), z = B, where A,B, t0 are some constants.

(Verify that ~F is tangent to the flow lines.)

Geometrically, the flow is a rotation about

the z-axis.

curl ~F =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

−y x 0

∣

∣

∣

∣

∣

∣

∣

= 2 ~k

and div ~F = 0. 2 x

y

z

Example 2. The flow of ~F = x~i+y~j+z~k

is described by x = A et, y = B et, z =

C et, where A,B,C are some constants.

It does not rotate, but diverges in all di-

rections.

curl ~F =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

x y z

∣

∣

∣

∣

∣

∣

∣

= ~0,

and div~F = 3. 2 x

y

z

Example 3. Let ~F be as in Example 1. Find the flux of ~F across the unit sphere

σ : x2 + y2 + z2 = 1 oriented by outward unit normals.

Solution. By the Divergence Theorem, if B denotes the unit ball: x2 +y2 + z2 ≤ 1,

then

flux =

∫∫

σ

~F · ~n dS =

∫∫∫

B

div ~F dv

=

∫∫∫

B

0 dv = 0.
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2

Example 4. Let ~F be as in Example 2. Find the flux of ~F across the sphere

σ : x2 + y2 + z2 = r2, oriented by outward unit normals.

Solution.

flux =

∫∫

σ

~F · ~n dS =

∫∫∫

Br

div ~F dV

=

∫∫∫

Br

(a+ b+ c) dV = (a+ b+ c)

∫∫∫

Br

1 dV

= (a+ b+ c)vol(Br) = (a+ b+ c)
4

3
πr3,

where Br denotes the ball: x2 + y2 + z2 ≤ r. 2
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