Sample Solutions for Tutorial 2

Question 1. Let \(K := \inf(A) \), \(L := \sup(A) \), \(M := \inf(B) \) and \(N := \sup(B) \).

A \cup B: Take \(x \in A \cup B \).
Then \(x \in A \) or \(x \in B \).
If \(x \in A \), then \(x \leq L \leq \max\{L, N\} \).
Otherwise, \(x \in B \), whence \(x \leq N \leq \max\{L, N\} \).
Thus, \(x \leq \max\{L, N\} \) for all \(x \in A \cup B \).
Hence, \(A \cup B \) is bounded above by \(\max\{L, N\} \).
To show that no smaller number can be an upper bound, take \(S < \max\{L, N\} \).
Then either \(S < L \) or \(S < N \).
In the former case, there is an \(x \in A \subseteq A \cup B \), with \(S < x \leq L \), so that \(S \) is not an upper bound for \(A \cup B \).
In the latter case, there is an \(x \in B \subseteq A \cup B \), with \(S < x \leq N \), so that \(S \) is not an upper bound for \(A \cup B \).
Hence \(\max\{L, N\} \) is the least upper bound for (supremum of) \(A \cup B \).

A \cap B: Take \(x \in A \cap B \).
Then \(x \in A \) and \(x \in B \).
Since \(x \in A \), we have \(x \geq K \).
Since \(x \in B \), we have \(x \geq M \).
Since \(x \geq K, M \), we have \(x \geq \max\{K, M\} \).
Thus, \(A \cap B \) is bounded below by \(\max\{K, M\} \).
Since \(A \cap B \) is a set of real numbers, that is bounded below, it has has an infimum.
Since \(K, M \) are both lower bounds for \(A \cap B \), \(\inf(A \cap B) \geq \max\{K, M\} \).
To see that equality need not hold, consider \(A := \{0, 2\} \) and \(B := \{1, 2\} \).
Then \(\inf(A) = 0 \), \(\inf(B) = 1 \), so that \(\max\{\inf(A), \inf(B)\} = \max\{0, 1\} = 1 \).
On the other hand, \(\inf(A \cap B) = \inf\{2\} = 2 \).

Question 2. As the sum of two real numbers is the same as the sum of their maximum and their minimum, given \(a, b \in \mathbb{R} \),
\[
\max\{a, b\} + \min\{a, b\} = a + b \tag{*}
\]
Similarly, the absolute value of their difference is the larger less the smaller, or,
\[
\max\{a, b\} - \min\{a, b\} = |a - b| \tag{**}
\]
Adding (**) to (*) yields \(2 \max\{a, b\} = a + b + |a - b| \), or
\[
\max\{a, b\} = \frac{a + b + |a - b|}{2}.
\]
Subtracting (**) from (*) yields \(2 \min\{a, b\} = a + b - |a - b| \), or
\[
\min\{a, b\} = \frac{a + b - |a - b|}{2}.
\]
Question 3.

(i): Take \(n \in \mathbb{N} \). Then
\[
\frac{1}{2^{n+1}} = \frac{1}{2} \cdot \frac{1}{2^n} < \frac{1}{2^n}
\]
as \(0 < \frac{1}{2} < 1 \).

Hence we can arrange the elements of \(A \) in strictly decreasing order as
\[
A := \{ 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \}
\]

It follows immediately that 1 is the largest element of \(A \), whence \(A \) is bounded above and has a supremum, 1, which is actually its maximum.

Since every element of \(A \) is positive, it follows immediately that \(A \) is bounded below by 0.

We show that 0 is actually the infimum (greatest lower bound) of \(A \). To show this we must show that given any positive real number, there is an element of \(A \) smaller than that positive real number.

We first use the Principle of Mathematical Induction to show that, for every \(n \in \mathbb{N} \), \(2^n > n \).

\(n = 0, 1 : \) In these cases we have
\[
2^0 = 1 > 0 \quad \text{and} \quad 2^1 = 2 > 1.
\]

\(n \geq 1 : \) We make the inductive hypothesis that \(2^n > n \). Then
\[
2^{n+1} = 2 \cdot 2^n > 2n \quad \text{by the Inductive Hypothesis}
\]
\[
= n + n = n + 1 \quad \text{as} \ n \geq 1.
\]

This completes the proof by mathematical induction.

An immediate consequence is that for every counting number, \(n \),
\[
0 < \frac{1}{2^n} \leq \frac{1}{n}.
\]

Take \(a > 0 \). Then \(\frac{1}{a} > 0 \).

By the Archimedean property of the real numbers, there is a counting number, \(n \), with
\[
0 < n - 1 \leq \frac{1}{a} < n.
\]

Since \(2^n > n \), we have \(0 < \frac{1}{a} < 2^n \), so that
\[
0 < \frac{1}{2^n} < a
\]

Since \(\frac{1}{2^n} \in A \), we have shown that \(a \) is not a lower bound for \(A \). Thus \(\inf(A) = 0 \).

Since \(0 \notin A \), \(A \) has an infimum, but no minimum;

(ii): Every integer \(n \) can be written in precisely one of the forms \(4k, 4k + 1, 4k + 2 \) or \(4k + 3 \), where \(k \) is itself an integer. Then there are four possibilities for \(\cos(n \frac{\pi}{2}) \), namely:
\(n = 4k : \) \(\cos(n \frac{\pi}{2}) = \cos(2k\pi) = \cos 0 = 1 \) as \(\cos(x + 2\pi) = \cos x. \)

\(n = 4k + 1 : \) \(\cos(n \frac{\pi}{2}) = \cos(2k\pi + \frac{\pi}{2}) = \cos \frac{\pi}{2} = 0. \)

\(n = 4k + 2 : \) \(\cos(n \frac{\pi}{2}) = \cos(2k\pi + \pi) = \cos \pi = -1. \)

\(n = 4k + 3 : \) \(\cos(n \frac{\pi}{2}) = \cos(2k\pi + \frac{3\pi}{2}) = \cos \frac{3\pi}{2} = 0. \)

Thus \(B = \{-1, 0, 1\} \) which is bounded, with \(-1\) as minimum and \(1\) as maximum.

(iii): In order for the inequality \(\frac{x}{1+x} \geq 0 \) to make sense, we must have \(1 + x \neq 0 \), or, equivalently, \(x \neq -1. \)

If \(x \neq -1 \), then either \(x < -1 \) or \(x > -1. \)

In the former case, \(1 + x < 0 \), so that \(\frac{x}{1+x} \geq 0 \) if and only if \(x \leq 0(1 + x) = 0, \)

which is always the case, since \(x < -1 < 0. \)

In the latter case, \(1 + x > 0 \), so that \(\frac{x}{1+x} \geq 0 \) if and only if \(x \geq 0(1 + x) = 0, \)

which is only the case when \(x \geq 0. \)

Hence \(C = \{x \in \mathbb{R} \mid x < -1 \text{ or } x \geq 0\} \), and this is bounded neither below nor above.

(iv): Observe that for \(x \neq -1 \)

\[
\frac{x}{1+x} = \frac{1+x-1}{1+x} = \frac{1+x}{1+x} - \frac{1}{1+x} = 1 - \frac{1}{1+x}.
\]

Since \(x \geq 0, 1 + x \geq 1 > 0, \) whence \(0 < \frac{1}{1+x} \leq 1. \)

Thus, \(0 \leq 1 - \frac{1}{1+x} < 1, \) or, equivalently,

\[0 \leq \frac{x}{1+x} < 1. \]

It follows immediately that \(D \) is bounded above by \(1 \) and below by \(0. \)

Moreover, since \(\frac{0}{1+r} = 0 \) and \(0 \geq 0, \) we see that \(0 \in D, \) whence \(\min(D) = 0. \)

Choose a real number, \(r, \) with \(0 < r < 1. \) Then \(0 < 1 - r < 1, \) whence \(\frac{1}{1-r} > 1. \)

Choose a real number, \(t, \) with \(t > \frac{1}{1-r} - 1 > 0. \)

Then \(1 + t > \frac{1}{1-r} > 1. \)

Hence \(0 < \frac{1}{1-r} < 1 - r < 1, \) or equivalently,

\[-1 < -(1 - r) < -\frac{1}{1+t} < 0, \]
whence
\[0 < r = 1 - (1 - r) < 1 - \frac{1}{1 + t} = \frac{t}{1 + t} < 1. \]

Since \(\frac{t}{1 + t} \in D \), we see that \(r \) is not an upper bound for \(D \).
Hence, \(\sup(D) = 1 \), but \(D \) has no maximum.

Question 4.

(i) \((2 - i)(2 + i) = 2^2 - i^2 = 4 - (-1) = 5 + 0i.\)

Thus \(|(2 - i)(2i)| = |5 + 0i| = 5\) and
\((2 - i)(2i) = 5 + i0 = 5 - 0i = 5.\)

(ii) \((6 + 5i)(2 - 7i) = (12 - (-35)) + i(-42 + 10) = 47 - 32i.\)

Thus \(|(6 + 5i)(2 - 7i)| = \sqrt{47^2 + (-32)^2} = \sqrt{3233}\) and
\((6 + 5i)(2 - 7i) = 47 + 32i.\)

(iii) \(\frac{2 - i}{1 + 2i} \quad \text{and} \quad \frac{2 - i}{1 + 2i} = i\)

Thus \(|\frac{2 - i}{1 + 2i}| = |i| = 1\) and
\(|\frac{2 - i}{1 + 2i}| = |i| = 1\)

Alternatively, note that since \(i^2 = -1\), we have \(-i^2 = 1.\)

Then \(2 - i = -i^2 - i = -i(1 + 2i)\), so that \(\frac{2 - i}{1 + 2i} = -i(1 + 2i) = -i\)

(iv) \(\frac{1 - 3i}{(2 + i)^2} + \frac{1 + i^3}{1 + i} = \frac{(1 - 3i)(2 - i)^2}{(2 + i)(2 - i)^2} + \frac{(1 - i)(1 - i)}{(1 + i)(1 - i)}\)

\[= \frac{(1 - 3i)(5 - 4i)}{25} + \frac{2 - 2i}{2} \]

\[= \frac{-7 - 19i}{25} + 1 - i \]

\[= \frac{18}{25} - \frac{44}{25}i \]

Thus \(|\frac{1 - 3i}{(2 + i)^2} + \frac{1 + i^3}{1 + i}| = \frac{18}{25} - \frac{44}{25}i = \frac{2}{25}|9 - 22i| = \frac{2\sqrt{565}}{25} = 2\sqrt{\frac{113}{5}}\) and

\(|\frac{1 - 3i}{(2 + i)^2} + \frac{1 + i^3}{1 + i}| = \frac{18}{25} + \frac{44}{25}\)