Sample Solutions

Question 1. Let \(p \) be a prime number and suppose that \(\sqrt{p} \) is rational.

Then \(\sqrt{p} = \frac{m}{n} \), for some counting numbers, \(m, n \), with no common factors, whence

\[
m^2 = pn^2, \tag{1}
\]

Thus, \(p \) divides \(m^2 \).

Since \(p \) is prime, \(p \) must divide \(m \), so that \(m = pk \) for some counting number, \(k \).

Substituting in Equation (1), we see that \(p^2k^2 = pn^2 \), or

\[
n^2 = pk^2,
\]

from which it follows that \(p \) divides \(n^2 \).

Since \(p \) is prime, \(p \) must divide \(n \), so that \(p \) is a common factor of \(m \) and \(n \), contradicting the choice of \(m \) and \(n \).

Hence \(\sqrt{p} \) is irrational for every prime number \(p \).

Question 2. If \(k = 1 \), then \(9^k - 1 = 9 - 1 = 8 \), which is plainly divisible by 8.

Now suppose that for some counting number, \(k \), there is a counting number \(m \) with \(9^k - 1 = 8m \).

Then

\[
9^{k+1} - 1 = 9^{k+1} - 9^k + 9^k - 1
= 9^k(9 - 1) + 8m \quad \text{by hypothesis}
= 8(9^k + m),
\]

showing that 8 divides \(9^{k+1} - 1 \).

So, by the Principle of Mathematical Induction, 8 divides \(9^k - 1 \) for all counting numbers \(k \).

Question 3. Let \(a > 1 \) be a real number. If \(n = 1 \), then

\[
(1 + a)^n = 1 + a = 1 + na.
\]

Suppose that for some counting number, \(n \), \((1 + a)^n \geq 1 + na \). Then

\[
(1 + a)^{n+1} = (1 + a)(1 + a)^n
\geq (1 + a)(1 + na) \quad \text{as } 1 + a > 0
= 1 + (n + 1)a + na^2
> 1 + (n + 1)a \quad \text{as } na^2 > 0.
\]

So, by the Principle of Mathematical Induction \((1 + a)^n \geq 1 + na \) for all counting numbers \(n \).

Question 4. Let \(A, B \) be subsets of \(X \). We use Venn diagrams to illustrate, successively, the subsets \(A \cup B, A', B', A' \cap B' \) and \((A' \cap B)' \).
Since the first and last diagrams agree, the sets they depict also agree.