ASSIGNMENT 5
(Post–By Date: 20th April)

Question 1.

For each of the following functions, state at which points the function is differentiable and find the derivative. If a function is not differentiable at a point explain why.

(a) \(f : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto 5x^4 - 3x^3 + x^2 - 1 \)

(b) \(g : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto \frac{2 - x^2}{2 + x^2} \)

(c) \(h : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto \begin{cases} x^2 + 2x & \text{if } x \leq 0 \\ \frac{x}{1 + x} & \text{if } x > 0 \end{cases} \)

(d) \(j : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto \sqrt{4x^2 + 1} \)

Question 2.

Use the formal definition of the derivative to prove that, for \(x > 0 \),

\[
\frac{d}{dx} (\sqrt{x}) = \frac{1}{2\sqrt{x}}.
\]

Question 3.

Differentiate the following functions twice, where possible. State where each function or its derivative, fails to be differentiable.

(a) \(f : \mathbb{R} \setminus \{1\} \rightarrow \mathbb{R}, \ x \mapsto \frac{x^2}{1 - x} \)

(b) \(g : \mathbb{R} \rightarrow \mathbb{R}, \ u \mapsto \sqrt{u^4 + 1} \)

(c) \(h : \mathbb{R} \setminus \{\pm 1\} \rightarrow \mathbb{R}, \ x \mapsto (1 - x^4)^{-2} \)

(d) \(j : \mathbb{R} \rightarrow \mathbb{R}, \ t \mapsto t^7 - 5t^4 + 3 \)

Question 4 is on the next page.
Question 4.

Take the function
\[f : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \frac{1}{4 + x^2} \]

(a) Find the points where the tangent line to the graph of \(f \) is horizontal.

(b) Discuss the behaviour of \(f \) near the points of part (a) and as \(x \to \pm \infty \).

(c) Sketch the graph of \(f \).

Question 5\(^*\) (Optional).

Prove, formally, that if the function \(f : \mathbb{R} \to \mathbb{R} \) is differentiable and if \(f(x) \neq 0 \) for all \(x \in \mathbb{R} \), then
\[g : \mathbb{R} \to \mathbb{R}, \quad u \mapsto \frac{1}{f(u)} \]

is also a differentiable function and for all \(u \in \mathbb{R} \),
\[\frac{d}{du} \left(\frac{1}{f(u)} \right) = -\frac{f'(u)}{(f(u))^2}. \]