ASSIGNMENT 10

(Post–By Date: 25th May)

Question 1.

Evaluate the following determinants. If you use any of the properties of determinants, state concisely which property you have used.

\[
\begin{vmatrix}
2 & 0 & -1 & 0 \\
1 & 1 & 1 & 1 \\
-2 & 3 & 1 & 0 \\
0 & 4 & 2 & -1 \\
\end{vmatrix}
\]

\[
\begin{vmatrix}
-15 & 12 & 27 & 1 \\
0 & 2 & 0 & 15 \\
0 & 0 & 1 & 10 \\
0 & 0 & 0 & 3 \\
\end{vmatrix}
\]

Question 2.

Find the eigenvalues and associated eigenvectors for the matrix \[
\begin{bmatrix}
2 & 7 \\
7 & 2 \\
\end{bmatrix}
\].

Question 3.

Let \(P, Q, R \) and \(S \) be the four points in \(\mathbb{R}^3 \) with co–ordinates \((-1, 0, 0), (1, 0, 0), (1, 1, 1) \) and \((2, 1, 2)\), respectively.

(a) Write \(\vec{PQ} \) and \(\vec{PR} \) in terms of the standard unit vectors \(i, j \) and \(k \).

(b) Find the orthogonal projection of \(\vec{PQ} \) onto \(\vec{PR} \).

(c) Find the area of the triangle with vertices \(P, Q \) and \(R \).

(d) Find the volume of the parallelepiped with sides given by the vectors \(\vec{PQ}, \vec{PR} \) and \(\vec{PS} \).

Question 4 is on the next page.
Let A and B be distinct points in \mathbb{R}^3. Show that the distance, d, of the point $P \in \mathbb{R}^3$ from the line through A and B is given by

$$d = \frac{\|\vec{PA} \times \vec{PB}\|}{\|\vec{AB}\|}.$$