Solution of Linear Homogeneous Recurrence Relations
General Solutions for Homogeneous Problems

Ioan Despi
despi@turing.une.edu.au

University of New England

September 16, 2013
Outline

1. Introduction

2. Main Theorem
 - Examples

3. General Procedure

4. More Examples
If the characteristic equation associated with a given m-th order linear, constant coefficient, homogeneous recurrence relation has some repeated roots, then the solution given by $\sum A_i \lambda_i^n$ will not have m arbitrary constants.
Introduction

- If the characteristic equation associated with a given m-th order linear, constant coefficient, homogeneous recurrence relation has some repeated roots, then the solution given by $\sum A_i \lambda_i^n$ will not have m arbitrary constants.
- To see this, we assume for instance $\lambda_1 = \lambda_2$, i.e. root λ_1 is repeated.
Introduction

- If the characteristic equation associated with a given m-th order linear, constant coefficient, homogeneous recurrence relation has some repeated roots, then the solution given by $\sum A_i \lambda_i^n$ will not have m arbitrary constants.

- To see this, we assume for instance $\lambda_1 = \lambda_2$, i.e. root λ_1 is repeated.

- Then the solution $a_n = \sum_{i=1}^{m} A_i \lambda_i^n = (A_1 + A_2) \lambda_2^n + A_3 \lambda_3^n + \cdots + A_m \lambda_m^n$ has less than m arbitrary constants because $A_1 + A_2$ comprises essentially only one arbitrary constant.
If the characteristic equation associated with a given m-th order linear, constant coefficient, homogeneous recurrence relation has some repeated roots, then the solution given by $\sum A_i \lambda_i^n$ will not have m arbitrary constants.

To see this, we assume for instance $\lambda_1 = \lambda_2$, i.e. root λ_1 is repeated.

Then the solution $a_n = \sum_{i=1}^{m} A_i \lambda_i^n = (A_1 + A_2)\lambda_2^n + A_3 \lambda_3^n + \cdots + A_m \lambda_m^n$ has less than m arbitrary constants because $A_1 + A_2$ comprises essentially only one arbitrary constant.

To make up for the missing ones, we introduce the following more general theorem.
Theorem

Suppose the characteristic equation of the linear, constant coefficient recurrence relation

\[c_m a_{n+m} + c_{m-1} a_{n+m-1} + \cdots + c_1 a_{n+1} + c_0 a_n = 0, \quad c_m c_0 \neq 0, \ n \geq 0 \]

has the following roots (all roots accounted for)

\[\lambda_1, \ldots, \lambda_1, \ \lambda_2, \ldots, \lambda_2, \ \cdots, \lambda_k, \ldots, \lambda_k \]

such that \(\lambda_1, \ldots, \lambda_k \) are distinct, \(m_1, \ldots, m_k \geq 1 \) and \(m_1 + \cdots + m_k = m \).

Then the general solution of the recurrence relation is

\[
a_n = \sum_{i=1}^{k} \left[\left(\sum_{j=0}^{m_i-1} A_{i,j} n^j \right) \lambda_i^n \right], \text{i.e.,}
\]

\[
a_n = (A_{1,0} + A_{1,1} n + \cdots + A_{1,m_1-1} n^{m_1-1}) \lambda_1^n + (A_{2,0} + A_{2,1} n + \cdots + A_{2,m_2-1} n^{m_2-1}) \lambda_2^n + \cdots + (A_{k,0} + A_{k,1} n + \cdots + A_{k,m_k-1} n^{m_k-1}) \lambda_k^n
\]

where \(A_{i,j}, \ \text{for} \ i = 1, \ldots, k \ \text{and} \ j = 0, \ldots, m_i - 1 \) are arbitrary constants.
So, if the characteristic equation has a root of, say, $\lambda = 3$ that occurs twice (called having **multiplicity** 2) then in the solution 3^n is multiplied by a polynomial of degree one less that the multiplicity.
So, if the characteristic equation has a root of, say, \(\lambda = 3 \) that occurs twice (called having \textbf{multiplicity} 2) then in the solution \(3^n \) is multiplied by a polynomial of degree one less that the multiplicity.

- that is of degree one, a linear polynomial: \((An + B)3^n\).
So, if the characteristic equation has a root of, say, \(\lambda = 3 \) that occurs twice (called having \textbf{multiplicity} 2) then in the solution \(3^n \) is multiplied by a polynomial of degree one less that the multiplicity.

- that is of degree one, a linear polynomial: \((An + B)3^n\).

If the root was \(\lambda = 4 \) of multiplicity 3 then \(4^n \) is multiplied by a polynomial of degree 2: \((An^2 + Bn + C)4^n\).
Notes

- So, if the characteristic equation has a root of, say, $\lambda = 3$ that occurs twice (called having multiplicity 2) then in the solution 3^n is multiplied by a polynomial of degree one less that the multiplicity.
 - that is of degree one, a linear polynomial: $(An + B)3^n$.

- If the root was $\lambda = 4$ of multiplicity 3 then 4^n is multiplied by a polynomial of degree 2: $(An^2 + Bn + C)4^n$.

- If the root was $\lambda = 5$ of multiplicity 4 then 5^n is multiplied by a polynomial of degree 3: $(An^3 + Bn^2 + Cn + D)5^n$.

So, if the characteristic equation has a root of, say, $\lambda = 3$ that occurs twice (called having multiplicity 2) then in the solution 3^n is multiplied by a polynomial of degree one less that the multiplicity.

- that is of degree one, a linear polynomial: $(An + B)3^n$.

If the root was $\lambda = 4$ of multiplicity 3 then 4^n is multiplied by a polynomial of degree 2: $(An^2 + Bn + C)4^n$.

If the root was $\lambda = 5$ of multiplicity 4 then 5^n is multiplied by a polynomial of degree 3: $(An^3 + Bn^2 + Cn + D)5^n$.

etc.
Example 1

Example

Find a particular solution of

\[f(n + 2) + 4f(n + 1) + 4f(n) = 0, \quad n \geq 0 \]

with initial conditions \(f(0) = 1 \) and \(f(1) = 2 \).
Example 1

Example

Find a particular solution of

\[f(n + 2) + 4f(n + 1) + 4f(n) = 0, \quad n \geq 0 \]

with initial conditions \(f(0) = 1 \) and \(f(1) = 2 \).

Solution. For clarity, we split the solution procedure into three steps below.

(a) The associated characteristic equation is \(\lambda^2 + 4\lambda + 4 = 0 \) which has a repeated root \(\lambda_1 = -2 \), i.e., \(m_1 = 2, \ k = 1 \).
Example 1

Example

Find a particular solution of

\[f(n + 2) + 4f(n + 1) + 4f(n) = 0, \quad n \geq 0 \]

with initial conditions \(f(0) = 1 \) and \(f(1) = 2 \).

Solution. For clarity, we split the solution procedure into three steps below.

(a) The associated characteristic equation is

\[\lambda^2 + 4\lambda + 4 = 0 \]

which has a repeated root \(\lambda_1 = -2 \), i.e., \(m_1 = 2 \), \(k = 1 \).

(b) The general solution from the theorem in this lecture is thus

\[f(n) = (A_{1,0} + A_{1,1}n)\lambda_1^n = (B_0 + B_1n)(-2)^n, \]

where \(B_0 = A_{1,0} \) and \(B_1 = A_{1,1} \) are arbitrary constants.
Example 1

Example

Find a particular solution of

\[f(n + 2) + 4f(n + 1) + 4f(n) = 0, \quad n \geq 0 \]

with initial conditions \(f(0) = 1 \) and \(f(1) = 2 \).

Solution. For clarity, we split the solution procedure into three steps below.

(a) The associated characteristic equation is \(\lambda^2 + 4\lambda + 4 = 0 \) which has a repeated root \(\lambda_1 = -2 \), i.e., \(m_1 = 2 \), \(k = 1 \).

(b) The general solution from the theorem in this lecture is thus

\[f(n) = (A_{1,0} + A_{1,1}n)\lambda_1^n = (B_0 + B_1 n)(-2)^n, \]

where \(B_0 = A_{1,0} \) and \(B_1 = A_{1,1} \) are arbitrary constants.

(c) Constants \(B_0 \) and \(B_1 \) are to be determined from the initial conditions

\[
\begin{align*}
 f(0) &= (B_0 + B_1 \times 0)(-2)^0 = 1 & \iff B_0 &= 1 \\
 f(1) &= (B_0 + B_1 \times 1)(-2)^1 = 2 & \implies -2(B_0 + B_1) &= 2.
\end{align*}
\]

They are thus \(B_0 = 1 \) and \(B_1 = -2 \). Hence the requested particular solution is

\[f(n) = (1 - 2n)(-2)^n, \quad n \geq 0. \]
Example 2

Example

Find the general solution of

\[a_{n+3} - 3a_{n+2} + 4a_n = 0 , \quad n \geq 0 \]
Example 2

Example

Find the general solution of

\[a_{n+3} - 3a_{n+2} + 4a_n = 0, \quad n \geq 0 \]

Solution.

- The associated characteristic equation is

\[F(\lambda) \triangleq \lambda^3 - 3\lambda^2 + 4 = 0. \]
Example 2

Example

Find the general solution of

\[a_{n+3} - 3a_{n+2} + 4a_n = 0 , \quad n \geq 0 \]

Solution.

- The associated characteristic equation is

\[F(\lambda) \overset{\text{def}}{=} \lambda^3 - 3\lambda^2 + 4 = 0 . \]

- Although there are formulae to give explicit roots for a third order polynomial in terms of its coefficients, we are taking a shortcut here by guessing one root \(\lambda_1 = -1 \).
Example 2

Example

Find the general solution of

\[a_{n+3} - 3a_{n+2} + 4a_n = 0, \quad n \geq 0 \]

Solution.

- The associated characteristic equation is
 \[F(\lambda) \overset{\text{def}}{=} \lambda^3 - 3\lambda^2 + 4 = 0. \]

- Although there are formulae to give explicit roots for a third order polynomial in terms of its coefficients, we are taking a shortcut here by guessing one root \(\lambda_1 = -1 \).
 - We can check that \(\lambda_1 = -1 \) is indeed a root by verifying
 \[F(-1) = (-1)^3 - 3(-1)^2 + 4 = 0. \]
Example 2

Example

Find the general solution of

\[a_{n+3} - 3a_{n+2} + 4a_n = 0 , \quad n \geq 0 \]

Solution.

- The associated characteristic equation is

\[F(\lambda) \overset{\text{def}}{=} \lambda^3 - 3\lambda^2 + 4 = 0 . \]

- Although there are formulae to give explicit roots for a third order polynomial in terms of its coefficients, we are taking a shortcut here by guessing one root \(\lambda_1 = -1 \).
 - We can check that \(\lambda_1 = -1 \) is indeed a root by verifying
 \[F(-1) = (-1)^3 - 3(-1)^2 + 4 = 0 . \]

- To find the remaining roots, we first factorise \(F(\lambda) \) by performing a long division:
Example 2

\[
\begin{array}{ccc}
\lambda^2 & -4\lambda & +4 \\
\lambda^3 & -3\lambda^2 & +4 \\
\lambda^3 & +\lambda^2 & \\
-4\lambda^2 & 0 \\
-4\lambda^2 & -4\lambda & +4 \\
4\lambda & +4 & 0
\end{array}
\]

which implies \(\lambda^3 - 3\lambda^2 + 4 = (\lambda + 1)(\lambda^2 - 4\lambda + 4) = (\lambda + 1)(\lambda - 2)^2 \).
Example 2

\[
\begin{array}{ccc}
\lambda^2 & -4\lambda & +4 \\
\lambda^3 & -3\lambda^2 & +4 \\
\lambda^3 & +\lambda^2 & \\
-4\lambda^2 & 0 & \\
-4\lambda^2 & -4\lambda & +4 \\
4\lambda & +4 & 0 \\
\end{array}
\]

\[
\lambda + 1
\]

which implies \(\lambda^3 - 3\lambda^2 + 4 = (\lambda + 1)(\lambda^2 - 4\lambda + 4) = (\lambda + 1)(\lambda - 2)^2. \)

Therefore all the roots, counting the corresponding multiplicity, are \(-1, 2, 2, \) i.e. \(\lambda_1 = -1, \ m_1 = 1 \) and \(\lambda_2 = 2, \ m_2 = 2. \)
Example 2

\[\lambda + 1 \begin{array}{ccc}
\lambda^2 & -4\lambda & +4 \\
\lambda^3 & -3\lambda^2 & +4 \\
\lambda^3 & +\lambda^2 & \\
-4\lambda^2 & 0 & \\
-4\lambda^2 & -4\lambda & \\
4\lambda & +4 & \\
4\lambda & +4 & 0
\end{array}\]

which implies \(\lambda^3 - 3\lambda^2 + 4 = (\lambda + 1)(\lambda^2 - 4\lambda + 4) = (\lambda + 1)(\lambda - 2)^2.\)

Therefore all the roots, counting the corresponding multiplicity, are \(-1, 2, 2,\) i.e. \(\lambda_1 = -1, m_1 = 1\) and \(\lambda_2 = 2, m_2 = 2.\)

Hence the general solution reads (with \(A = A_{1,0}, B = A_{2,0}, C = A_{2,1}\))

\[a_n = A(-1)^n + (B + Cn)2^n, \quad n \geq 0.\]
Example 3

Example

Find the particular solution of

\[u_{n+3} + 3u_{n+2} + 3u_{n+1} + u_n = 0 \ , \ n \geq 0 \]

satisfying the initial conditions \(u_0 = 1 \), \(u_1 = 1 \) and \(u_2 = -7 \).
Example 3

Example

Find the particular solution of

\[u_{n+3} + 3u_{n+2} + 3u_{n+1} + u_n = 0 \], \quad n \geq 0

satisfying the initial conditions \(u_0 = 1 \), \(u_1 = 1 \) and \(u_2 = -7 \).

Solution.

(a) The associated characteristic equation \(\lambda^3 + 3\lambda^2 + 3\lambda + 1 \equiv (\lambda + 1)^3 = 0 \) has roots \(\lambda_1 = -1 \) with multiplicity \(m_1 = 3 \).
Example 3

Example

Find the particular solution of

\[u_{n+3} + 3u_{n+2} + 3u_{n+1} + u_n = 0 \ , \ n \geq 0 \]

satisfying the initial conditions \(u_0 = 1 \), \(u_1 = 1 \) and \(u_2 = -7 \).

Solution.

(a) The associated characteristic equation \(\lambda^3 + 3\lambda^2 + 3\lambda + 1 \equiv (\lambda + 1)^3 = 0 \) has roots \(\lambda_1 = -1 \) with multiplicity \(m_1 = 3 \).

(b) The general solution then reads for arbitrary constants \(A, B \) and \(C \)

\[u_n = (A + Bn + Cn^2)(-1)^n \ , \ n \geq 0 \]
Example 3

Example

Find the particular solution of

\[u_{n+3} + 3u_{n+2} + 3u_{n+1} + u_n = 0, \quad n \geq 0 \]

satisfying the initial conditions \(u_0 = 1, \ u_1 = 1 \) and \(u_2 = -7 \).

Solution.

(a) The associated characteristic equation \(\lambda^3 + 3\lambda^2 + 3\lambda + 1 \equiv (\lambda + 1)^3 \equiv 0 \) has roots \(\lambda = -1 \) with multiplicity \(m_1 = 3 \).

(b) The general solution then reads for arbitrary constants \(A, B \) and \(C \)

\[u_n = (A + Bn + Cn^2)(-1)^n, \quad n \geq 0 \]

(c) To determine \(A, B \) and \(C \) through the use of the initial conditions, we set \(n \) in the solution expression in (b) to 0, 1 and 2 respectively, then

\[
\begin{align*}
 u_0 \text{ gives } & A = 1 \\
 u_1 \text{ gives } & (A + B + C)(-1) = 1 \\
 u_2 \text{ gives } & A + 2B + 4C = -7.
\end{align*}
\]

The solution of these 3 equations, \(A = 1, \ B = 0, \ C = -2 \), finally produces

the required particular solution

\[u_n = (1 - 2n^2)(-1)^n, \quad n \geq 0 \]
General Procedure

The general process for solving linear homogeneous recurrence relations with constant coefficients is like this:

1. Find the characteristic equation.
General Procedure

The general process for solving linear homogeneous recurrence relations with constant coefficients is like this:

1. Find the characteristic equation.
2. Find the characteristic roots.
General Procedure

The general process for solving linear homogeneous recurrence relations with constant coefficients is like this:

1. Find the characteristic equation.
2. Find the characteristic roots.
3. Find the general solution.
General Procedure

The general process for solving linear homogeneous recurrence relations with constant coefficients is like this:

1. Find the characteristic equation.
2. Find the characteristic roots.
3. Find the general solution.
4. Use the initial conditions to find the specific solution.
Example

Solve the following (shifted Fibonacci) recurrence relation:

\[f_n = f_{n-1} + f_{n-2}, \quad f_0 = 0, \text{ and } f_1 = 1 \]
Example

Solve the following (shifted Fibonacci) recurrence relation:

\[f_n = f_{n-1} + f_{n-2}, \quad f_0 = 0, \text{ and } f_1 = 1 \]

Solution.

1. The characteristic equation is \(\lambda^2 - \lambda - 1 = 0 \)
Example

Solve the following (shifted Fibonacci) recurrence relation:

\[f_n = f_{n-1} + f_{n-2}, \quad f_0 = 0, \text{ and } f_1 = 1 \]

Solution.

1. The characteristic equation is \[\lambda^2 - \lambda - 1 = 0 \]
2. The roots are \(\lambda_1 = \frac{1 + \sqrt{5}}{2} \) and \(\lambda_2 = \frac{1 - \sqrt{5}}{2} \)
More Examples

Example

Solve the following (shifted Fibonacci) recurrence relation:

\[f_n = f_{n-1} + f_{n-2}, \quad f_0 = 0, \text{ and } f_1 = 1 \]

Solution.

1. The characteristic equation is \[\lambda^2 - \lambda - 1 = 0 \]
2. The roots are \[\lambda_1 = \frac{1 + \sqrt{5}}{2} \] and \[\lambda_2 = \frac{1 - \sqrt{5}}{2} \]
3. The general solution is \[f_n = A \left(\frac{1 + \sqrt{5}}{2} \right)^n + B \left(\frac{1 - \sqrt{5}}{2} \right)^n \]
Example

Solve the following (shifted Fibonacci) recurrence relation:

\[f_n = f_{n-1} + f_{n-2}, \quad f_0 = 0, \text{ and } f_1 = 1 \]

Solution.

1. The characteristic equation is \(\lambda^2 - \lambda - 1 = 0 \)
2. The roots are \(\lambda_1 = \frac{1+\sqrt{5}}{2} \) and \(\lambda_2 = \frac{1-\sqrt{5}}{2} \)
3. The general solution is \(f_n = A \left(\frac{1+\sqrt{5}}{2} \right)^n + B \left(\frac{1-\sqrt{5}}{2} \right)^n \)
4. Use the initial conditions to find the specific solution

\[f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n \]
Example

Solve the following recurrence relation:

\[a_n = 2(a_{n-1} - a_{n-2}) \]

with initial conditions \(a_0 = a_1 = 1 \)
Example

Solve the following recurrence relation:

\[a_n = 2(a_{n-1} - a_{n-2}) \]

with initial conditions \(a_0 = a_1 = 1 \)

Solution.

1. The characteristic equation is \(\lambda^2 - 2\lambda + 2 = 0 \)
Example

Solve the following recurrence relation:

\[a_n = 2(a_{n-1} - a_{n-2}) \]

with initial conditions \(a_0 = a_1 = 1 \)

Solution.

1. The characteristic equation is \(\lambda^2 - 2\lambda + 2 = 0 \)
2. The roots are \(\lambda_1 = 1 + i \) and \(\lambda_2 = 1 - i \).
Example

Solve the following recurrence relation:

\[a_n = 2(a_{n-1} - a_{n-2}) \]

with initial conditions \(a_0 = a_1 = 1 \)

Solution.

1. The characteristic equation is \(\lambda^2 - 2\lambda + 2 = 0 \)
2. The roots are \(\lambda_1 = 1 + i \) and \(\lambda_2 = 1 - i \).
3. The general solution is \(a_n = A (1 + i)^n + B (1 - i)^n \)
More Examples

Example

Solve the following recurrence relation:

\[a_n = 2(a_{n-1} - a_{n-2}) \]

with initial conditions \(a_0 = a_1 = 1 \)

Solution.

1. The characteristic equation is \(\lambda^2 - 2\lambda + 2 = 0 \)
2. The roots are \(\lambda_1 = 1 + i \) and \(\lambda_2 = 1 - i \).
3. The general solution is \(a_n = A (1 + i)^n + B (1 - i)^n \)
4. Use the initial conditions to find the specific solution \(A = 1/2, B = 1/2, \)
 i.e., \(a_n = \frac{1}{2} (1 + i)^n + \frac{1}{2} (1 - i)^n \)
Example

Solve the following recurrence relation:

\[a_n = 6a_{n-1} - 9a_{n-2} \]

with initial conditions \(a_0 = 3 \) and \(a_1 = 10 \)
Example

Solve the following recurrence relation:

\[a_n = 6a_{n-1} - 9a_{n-2} \]

with initial conditions \(a_0 = 3 \) and \(a_1 = 10 \)

Solution.

1. The characteristic equation is \(\lambda^2 - 6\lambda + 9 = 0 \)
More Examples

Example

Solve the following recurrence relation:

\[a_n = 6a_{n-1} - 9a_{n-2} \]

with initial conditions \(a_0 = 3 \) and \(a_1 = 10 \)

Solution.

1. The characteristic equation is \(\lambda^2 - 6\lambda + 9 = 0 \)
2. The roots for \((\lambda - 3)^2 = 0\) are \(\lambda_1 = \lambda_2 = 3 \), so \(m_1 = 2 \).
Example

Solve the following recurrence relation:

\[a_n = 6a_{n-1} - 9a_{n-2} \]

with initial conditions \(a_0 = 3 \) and \(a_1 = 10 \)

Solution.

1. The characteristic equation is \(\lambda^2 - 6\lambda + 9 = 0 \)
2. The roots for \((\lambda - 3)^2 = 0 \) are \(\lambda_1 = \lambda_2 = 3 \), so \(m_1 = 2 \).
3. The general solution is \(a_n = (A + Bn)3^n \)
Example

Solve the following recurrence relation:

\[a_n = 6a_{n-1} - 9a_{n-2} \]

with initial conditions \(a_0 = 3 \) and \(a_1 = 10 \)

Solution.

1. The characteristic equation is \(\lambda^2 - 6\lambda + 9 = 0 \)
2. The roots for \((\lambda - 3)^2 = 0 \) are \(\lambda_1 = \lambda_2 = 3 \), so \(m_1 = 2 \).
3. The general solution is \(a_n = (A + Bn)3^n \)
4. Use the initial conditions to find the specific solution
 \[a_n = (3 + \frac{1}{3}n) 3^n = 3^{n+1} + n3^{n-1} \]
Example

Solve the following recurrence relation:

\[2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n \]

with initial conditions \(a_0 = 0, \ a_1 = 1 \) and \(a_2 = 2 \)
Example

Solve the following recurrence relation:

\[2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n \]

with initial conditions \(a_0 = 0, a_1 = 1 \) and \(a_2 = 2 \)

Solution.

1. The characteristic equation is \(2\lambda^3 - \lambda^2 - 2\lambda + 1 = 0 \)
Example

Solve the following recurrence relation:

\[2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n \]

with initial conditions \(a_0 = 0 \), \(a_1 = 1 \) and \(a_2 = 2 \)

Solution.

1. The characteristic equation is \(2\lambda^3 - \lambda^2 - 2\lambda + 1 = 0 \)
2. The roots are \(\lambda_1 = 1 \), \(\lambda_2 = -1 \), \(\lambda_3 = 1/2 \)
Example

Solve the following recurrence relation:

\[2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n \]

with initial conditions \(a_0 = 0, \ a_1 = 1 \) and \(a_2 = 2 \)

Solution.

1. The characteristic equation is \(2\lambda^3 - \lambda^2 - 2\lambda + 1 = 0 \)
2. The roots are \(\lambda_1 = 1, \ \lambda_2 = -1, \ \lambda_3 = 1/2 \)
3. The general solution is \(a_n = A(1)^n + B(-1)^n + C(\frac{1}{2})^n \)
Example

Solve the following recurrence relation:

$$2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n$$

with initial conditions $a_0 = 0$, $a_1 = 1$ and $a_2 = 2$

Solution.

1. The characteristic equation is

$$2\lambda^3 - \lambda^2 - 2\lambda + 1 = 0$$

2. The roots are $\lambda_1 = 1$, $\lambda_2 = -1$, $\lambda_3 = 1/2$

3. The general solution is

$$a_n = A(1)^n + B(-1)^n + C\left(\frac{1}{2}\right)^n$$

4. Use the initial conditions to find the specific solution $A = 5/2$, $B = 1/6$, $C = -8/3$, so

$$a_n = \frac{5}{2} + \frac{1}{6}(-1)^n - \frac{8}{3}\left(\frac{1}{2}\right)^n$$
Example

How many binary strings (strings of ’0’s and ’1’s) of n bits have no two consecutive zeros?
Example

How many binary strings (strings of ’0’ s and ’1’ s) of \(n \) bits have no two consecutive zeros?

Solution.

- Let \(a_n \) be the number of such strings.
More Examples

Example
How many binary strings (strings of ’0’s and ’1’s) of \(n \) bits have no two consecutive zeros?

Solution.
- Let \(a_n \) be the number of such strings.
- Clearly, \(a_0 = 0 \), \(a_1 = 2 \), and \(a_2 = 3 \).
Example

How many binary strings (strings of ’0’s and ’1’s) of \(n \) bits have no two consecutive zeros?

Solution.

- Let \(a_n \) be the number of such strings.
- Clearly, \(a_0 = 0 \), \(a_1 = 2 \), and \(a_2 = 3 \).
- An \(n \) bit such string
Example

How many binary strings (strings of ’0’\textquotesingle s and ’1’\textquotesingle s) of \(n \) bits have no two consecutive zeros?

Solution.

- Let \(a_n \) be the number of such strings.
- Clearly, \(a_0 = 0 \), \(a_1 = 2 \), and \(a_2 = 3 \).
- An \(n \) bit such string
 - begins with \((1\text{, and ends with any } n - 1 \text{ bit string, or})\)
Example

How many binary strings (strings of ’0’s and ’1’s) of \(n \) bits have no two consecutive zeros?

Solution.

- Let \(a_n \) be the number of such strings.
- Clearly, \(a_0 = 0 \), \(a_1 = 2 \), and \(a_2 = 3 \).
- An \(n \) bit such string
 - begins with \(1 \), and ends with any \(n - 1 \) bit string, or
 - begins with \(0, 1 \), and ends with any \(n - 2 \) bit string.
More Examples

Example
How many binary strings (strings of ’0’s and ’1’s) of n bits have no two consecutive zeros?

Solution.
- Let a_n be the number of such strings.
- Clearly, $a_0 = 0$, $a_1 = 2$, and $a_2 = 3$.
- An n bit such string
 - begins with $(1$, and ends with any $n - 1$ bit string, or
 - begins with $(0, 1$, and ends with any $n - 2$ bit string.
- So $a_n = a_{n-1} + a_{n-2}$.
Example

How many binary strings (strings of '0’s and '1’s) of \(n \) bits have no two consecutive zeros?

Solution.

- Let \(a_n \) be the number of such strings.
- Clearly, \(a_0 = 0 \), \(a_1 = 2 \), and \(a_2 = 3 \).
- An \(n \) bit such string
 - begins with \((1)\), and ends with any \(n-1 \) bit string, or
 - begins with \((0, 1)\), and ends with any \(n-2 \) bit string.
- So \(a_n = a_{n-1} + a_{n-2} \).
- The characteristic equation is \(\lambda^2 - \lambda - 1 \), etc.