Recurrence Relations
Simplest Case of General Solutions

Ioan Despi
despi@turing.une.edu.au

University of New England

September 13, 2013
Outline

1. Simplest Case of General Solutions
 - Example
Simplest Case of General Solutions

\[c_m a_{n+m} + c_{m-1} a_{n+m-1} + \cdots + c_1 a_{n+1} + c_0 a_n = g(n), \quad n \geq 0 \quad (***) \]

\[\sum_{k=0}^{m} c_k a_{n+k} = g(n) \]

Definition

A solution \(a_n \) of a recurrence relation (***) is said to be a **general solution**, typically containing some arbitrary constants in the solution expression for \(a_n \), if any **particular solution** of the recurrence relation (***) can be obtained as a **special case** of the general solution.
Verify that $a_n = A2^n + B3^n$ for arbitrary constants A and B solves the recurrence relation $a_{n+2} - 5a_{n+1} + 6a_n = 0$.

Likewise we can show that $a_n = 5 \times 2^n$ is also a (particular) solution. Obviously the particular solution $a_n = 5 \times 2^n$ is included in the more general solution expression $a_n = A2^n + B3^n$ if we choose $A = 5$ and $B = 0$.

In fact one can show that all the solutions of $a_{n+2} - 5a_{n+1} + 6a_n = 0$ are embraced by the solution expression $a_n = A2^n + B3^n$, which is hence the general solution.
Simplest Case of General Solutions

An alternative way to determine if a solution is the general solution of an \(m \)-th order linear, constant coefficient recurrence relation is to see if the solution expression contains exactly \(m \) independent arbitrary constants.
Simplest Case of General Solutions

- An alternative way to determine if a solution is the general solution of an m-th order linear, constant coefficient recurrence relation is to see if the solution expression contains exactly m independent arbitrary constants.

- The word *independent* here roughly means that none of the arbitrary constants can be made redundant.
Simplest Case of General Solutions

- An alternative way to determine if a solution is the general solution of an m-th order linear, constant coefficient recurrence relation is to see if the solution expression contains exactly m independent arbitrary constants.

- The word independent here roughly means that none of the arbitrary constants can be made redundant.

- From this perspective, we can also conclude that

$$a_n = A2^n + B3^n$$

is the general solution of the second order recurrence relation

$$a_{n+2} - 5a_{n+1} + 6a_n = 0$$

because the solution contains A and B as the two independent arbitrary constants.
Recall

- A polynomial $f(\lambda)$ has λ_0 as one of its roots precisely when $f(\lambda_0) = 0$.

For example, if $f(\lambda) = \lambda^2 - 5\lambda + 6$, then $\lambda_0 = 3$ is one of its roots because $f(\lambda_0) = f(3) = 3^2 - 5 \times 3 + 6 = 0$.

In other words, 3 is a root of the equation $\lambda^2 - 5\lambda + 6 = 0$.

In general, a polynomial equation of order n will have exactly n roots, some of which may be distinct while others may be repeated, some of which may be real while others may be complex numbers.

A second order polynomial equation $a\lambda^2 + b\lambda + c = 0$, $a \neq 0$ has two roots, λ_1 and λ_2, given by

$$\lambda_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad \lambda_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a},$$

If $\lambda_1 = \lambda_2$, then the two roots are the repeated roots and λ_1, which is the same as λ_2, is a root of multiplicity 2. If $\sqrt{b^2 - 4ac} \geq 0$ the two roots are real numbers, else if $\sqrt{b^2 - 4ac} < 0$ the two roots are complex numbers.
Recall

- A polynomial $f(\lambda)$ has λ_0 as one of its roots precisely when $f(\lambda_0) = 0$.
 - For example, if $f(\lambda) = \lambda^2 - 5\lambda + 6$, then $\lambda_0 = 3$ is one of its roots because $f(\lambda_0) = f(3) = 3^2 - 5 \times 3 + 6 = 0$.

In general, a polynomial equation of order n will have exactly n roots, some of which may be distinct while others may be repeated, some of which may be real while others may be complex numbers.
Recall

- A polynomial $f(\lambda)$ has λ_0 as one of its roots precisely when $f(\lambda_0) = 0$.
 - For example, if $f(\lambda) = \lambda^2 - 5\lambda + 6$, then $\lambda_0 = 3$ is one of its roots because
 $f(\lambda_0) = f(3) = 3^2 - 5 \times 3 + 6 = 0$.
 - In other words, 3 is a root of the equation $\lambda^2 - 5\lambda + 6 = 0$.

In general, a polynomial equation of order n will have exactly n roots, some of which may be distinct while others may be repeated, some of which may be real while others may be complex numbers.

A second order polynomial equation $a\lambda^2 + b\lambda + c = 0$, $a \neq 0$ has two roots, λ_1 and λ_2, given by

$$
\lambda_1 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a},
\lambda_2 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a},
$$

If $\lambda_1 = \lambda_2$, then the two roots are the repeated roots and λ_1, which is the same as λ_2, is a root of multiplicity 2. If $\sqrt{b^2 - 4ac} \geq 0$ the two roots are real numbers, else if $\sqrt{b^2 - 4ac} < 0$ the two roots are complex numbers.
Recall

- A polynomial \(f(\lambda) \) has \(\lambda_0 \) as one of its roots precisely when \(f(\lambda_0) = 0 \).
 - For example, if \(f(\lambda) = \lambda^2 - 5\lambda + 6 \), then \(\lambda_0 = 3 \) is one of its roots because \(f(\lambda_0) = f(3) = 3^2 - 5 \times 3 + 6 = 0 \).
 - In other words, 3 is a root of the equation \(\lambda^2 - 5\lambda + 6 = 0 \).
- In general, a polynomial equation of order \(n \) will have exactly \(n \) roots, some of which may be distinct while others may be repeated, some of which may be real while others may be complex numbers.
Recall

- A polynomial \(f(\lambda) \) has \(\lambda_0 \) as one of its roots precisely when \(f(\lambda_0) = 0 \).
 - For example, if \(f(\lambda) = \lambda^2 - 5\lambda + 6 \), then \(\lambda_0 = 3 \) is one of its roots because \(f(\lambda_0) = f(3) = 3^2 - 5 \times 3 + 6 = 0 \).
 - In other words, 3 is a root of the equation \(\lambda^2 - 5\lambda + 6 = 0 \).
- In general, a polynomial equation of order \(n \) will have exactly \(n \) roots, some of which may be distinct while others may be repeated, some of which may be real while others may be complex numbers.
- A second order polynomial equation
 \[
 a\lambda^2 + b\lambda + c = 0 , \quad a \neq 0
 \]
 has two roots, \(\lambda_1 \) and \(\lambda_2 \), given by
 \[
 \lambda_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} , \quad \lambda_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} ,
 \]
Recall

- A polynomial $f(\lambda)$ has λ_0 as one of its roots precisely when $f(\lambda_0) = 0$.
 - For example, if $f(\lambda) = \lambda^2 - 5\lambda + 6$, then $\lambda_0 = 3$ is one of its roots because $f(\lambda_0) = f(3) = 3^2 - 5 \times 3 + 6 = 0$.
 - In other words, 3 is a root of the equation $\lambda^2 - 5\lambda + 6 = 0$.

- In general, a polynomial equation of order n will have exactly n roots, some of which may be distinct while others may be repeated, some of which may be real while others may be complex numbers.

- A second order polynomial equation

 $$a\lambda^2 + b\lambda + c = 0, \quad a \neq 0$$

has two roots, λ_1 and λ_2, given by

$$\lambda_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad \lambda_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a},$$

- If $\lambda_1 = \lambda_2$, then the two roots are the repeated roots and λ_1, which is the same as λ_2, is a root of multiplicity 2. If $\sqrt{b^2 - 4ac} \geq 0$ the two roots are real numbers, else if $\sqrt{b^2 - 4ac} < 0$ the two roots are complex numbers.
Recall

For a polynomial equation $f(\lambda) = 0$, a value λ_0 is said to be a root of multiplicity m if $f(\lambda)$ can be written as

$$f(\lambda) = (\lambda - \lambda_0)^m g(\lambda)$$

such that $g(\lambda)$ is again a polynomial with $g(\lambda_0) \neq 0$.

For example, the polynomial equation $\lambda^2 - 6\lambda + 9 = 0$ has a root 3 of multiplicity 2.

This is because $\lambda^2 - 6\lambda + 9 = (\lambda - 3)^2 \times 1$, in which $f(\lambda) = \lambda^2 - 6\lambda + 9$, $g(\lambda) = 1$, $\lambda_0 = 3$ and $m = 2$.

If we solve the equation $\lambda^2 - 6\lambda + 9 = 0$ through the use of the above root formula for λ_1 and λ_2, we see that both λ_1 and λ_2 are equal to the same value 3.

This also explains why 3 is a root of multiplicity 2 for the equation $\lambda^2 - 6\lambda + 9 = 0$.
Recall

For a polynomial equation \(f(\lambda) = 0 \), a value \(\lambda_0 \) is said to be a **root of multiplicity** \(m \) if \(f(\lambda) \) can be written as

\[
f(\lambda) = (\lambda - \lambda_0)^m g(\lambda)
\]

such that \(g(\lambda) \) is again a polynomial with \(g(\lambda_0) \neq 0 \).

For example, the polynomial equation \(\lambda^2 - 6\lambda + 9 = 0 \) has a root 3 of multiplicity 2.
Recall

- For a polynomial equation \(f(\lambda) = 0 \), a value \(\lambda_0 \) is said to be a **root of multiplicity** \(m \) if \(f(\lambda) \) can be written as

\[
 f(\lambda) = (\lambda - \lambda_0)^m g(\lambda)
\]

such that \(g(\lambda) \) is again a polynomial with \(g(\lambda_0) \neq 0 \).

- For example, the polynomial equation \(\lambda^2 - 6\lambda + 9 = 0 \) has a root 3 of multiplicity 2.
 - This is because \(\lambda^2 - 6\lambda + 9 = (\lambda - 3)^2 \times 1 \), in which \(f(\lambda) = \lambda^2 - 6\lambda + 9 \), \(g(\lambda) = 1 \), \(\lambda_0 = 3 \) and \(m = 2 \).
Recall

- For a polynomial equation $f(\lambda) = 0$, a value λ_0 is said to be a **root of multiplicity** m if $f(\lambda)$ can be written as

 \[f(\lambda) = (\lambda - \lambda_0)^m g(\lambda) \]

 such that $g(\lambda)$ is again a polynomial with $g(\lambda_0) \neq 0$.

- For example, the polynomial equation $\lambda^2 - 6\lambda + 9 = 0$ has a root 3 of multiplicity 2.

 ▶ This is because $\lambda^2 - 6\lambda + 9 = (\lambda - 3)^2 \times 1$, in which $f(\lambda) = \lambda^2 - 6\lambda + 9$, $g(\lambda) = 1$, $\lambda_0 = 3$ and $m = 2$.

 ▶ If we solve the equation $\lambda^2 - 6\lambda + 9 = 0$ through the use of the above root formula for λ_1 and λ_2, we see that both λ_1 and λ_2 are equal to the same value 3.
Recall

For a polynomial equation $f(\lambda) = 0$, a value λ_0 is said to be a root of multiplicity m if $f(\lambda)$ can be written as

$$f(\lambda) = (\lambda - \lambda_0)^m g(\lambda)$$

such that $g(\lambda)$ is again a polynomial with $g(\lambda_0) \neq 0$.

For example, the polynomial equation $\lambda^2 - 6\lambda + 9 = 0$ has a root 3 of multiplicity 2.

- This is because $\lambda^2 - 6\lambda + 9 = (\lambda - 3)^2 \times 1$, in which $f(\lambda) = \lambda^2 - 6\lambda + 9$, $g(\lambda) = 1$, $\lambda_0 = 3$ and $m = 2$.
- If we solve the equation $\lambda^2 - 6\lambda + 9 = 0$ through the use of the above root formula for λ_1 and λ_2, we see that both λ_1 and λ_2 are equal to the same value 3.
- This also explains why 3 is a root of multiplicity 2 for the equation $\lambda^2 - 6\lambda + 9 = 0$.
Recall

- A polynomial equation $f(\lambda) = 0$ has a root λ_0, i.e., $f(\lambda_0) = 0$, if and only if $f(\lambda) = (\lambda - \lambda_0) \cdot g(\lambda)$ for another nonzero polynomial $g(\lambda)$.

- If λ_0 is furthermore a root of multiplicity $m > 1$ of $f(\lambda) = 0$, then λ_0 must be a root of multiplicity $m - 1$ of $g(\lambda) = 0$.

- A root of multiplicity 1 is called a simple root.

- A simple root is thus not a repeated root.
Recall

- A polynomial equation $f(\lambda) = 0$ has a root λ_0, i.e., $f(\lambda_0) = 0$, if and only if $f(\lambda) = (\lambda - \lambda_0) \cdot g(\lambda)$ for another nonzero polynomial $g(\lambda)$.
- If λ_0 is furthermore a root of multiplicity $m > 1$ of $f(\lambda) = 0$, then λ_0 must be a root of multiplicity $m - 1$ of $g(\lambda) = 0$.

A root of multiplicity 1 is called a simple root. A simple root is thus not a repeated root.
Recall

- A polynomial equation $f(\lambda) = 0$ has a root λ_0, i.e., $f(\lambda_0) = 0$, if and only if $f(\lambda) = (\lambda - \lambda_0) \cdot g(\lambda)$ for another nonzero polynomial $g(\lambda)$.
- If λ_0 is furthermore a root of multiplicity $m > 1$ of $f(\lambda) = 0$, then λ_0 must be a root of multiplicity $m - 1$ of $g(\lambda) = 0$.
- A root of multiplicity 1 is called a \textbf{simple root}.
Recall

- A polynomial equation $f(\lambda) = 0$ has a root λ_0, i.e., $f(\lambda_0) = 0$, if and only if $f(\lambda) = (\lambda - \lambda_0) \cdot g(\lambda)$ for another nonzero polynomial $g(\lambda)$.

- If λ_0 is furthermore a root of multiplicity $m > 1$ of $f(\lambda) = 0$, then λ_0 must be a root of multiplicity $m - 1$ of $g(\lambda) = 0$.

- A root of multiplicity 1 is called a **simple root**.
 - A simple root is thus not a repeated root.
Simplest Case of General Solutions

Theorem

If the characteristic equation of an \(m \)-th order homogeneous, linear, constant coefficient recurrence relation

\[
c_m a_{n+m} + c_{m-1} a_{n+m-1} + \cdots + c_1 a_{n+1} + c_0 a_n = 0, \quad c_m c_0 \neq 0, \quad n \geq 0
\]

has \(m \) distinct roots \(\lambda_1, \lambda_2, \cdots, \lambda_m \), then

\[
a_n = A_1 \lambda_1^n + A_2 \lambda_2^n + \cdots + A_m \lambda_m^n
\]

with arbitrary constants \(A_1, \cdots, A_m \) is the general solution of the recurrence relation.
Proof.

First we show $a_n = \sum_{i=1}^{m} A_i \lambda_i^n$ is a solution. For this purpose we substitute the expression for a_n into the recurrence relation and obtain

\[
c_m a_{n+m} + \cdots + c_1 a_{n+1} + c_0 a_0 = \\
= c_m (A_1 \lambda_1^{n+m} + \cdots + A_m \lambda_m^{n+m}) + \cdots + c_1 (A_1 \lambda_1^{n+1} + \cdots + A_m \lambda_m^{n+1}) \\
+ c_0 (A_1 \lambda_1^n + \cdots + A_m \lambda_m^n) \\
= A_1 (c_m \lambda_1^{n+m} + \cdots + c_1 \lambda_1^{n+1} + c_0 \lambda_1^n) + A_2 (c_m \lambda_2^{n+m} + \cdots + c_1 \lambda_2^{n+1} + c_0 \lambda_2^n) \\
+ \cdots + A_m (c_m \lambda_m^{n+m} + \cdots + c_1 \lambda_m^{n+1} + c_0 \lambda_m^n) \\
= \sum_{i=1}^{m} A_i \lambda_i^n (c_m \lambda_i^m + \cdots + c_1 \lambda_i + c_0) = 0.
\]

Hence $a_n = \sum_{i=1}^{m} A_i \lambda_i^n$ is a solution. Since the solution involves m arbitrary constants A_1, \cdots, A_m, it is in fact a general solution.
Proof.

Alternatively, we can also argue that for any initial values of a_0, \cdots, a_{m-1}, since the linear system of m equations

$$\sum_{i=1}^{m} A_i \lambda_i^k = a_k, \quad k = 0, 1, \cdots, m - 1$$

has a (unique) solution for A_1, \cdots, A_m, the expression $a_n = \sum_{i=1}^{m} A_i \lambda_i^n$ is indeed a general solution.

If the roots $\lambda_1, \cdots, \lambda_m$ are not distinct, i.e., there are repeated roots, then

$$a_n = \sum_{i=1}^{m} A_i \lambda_i^n$$

is still a solution but is not a general solution. The general solution for such cases will be dealt with in the next section. \square
Corollary (1)

Given two solutions \(\{x_n\} \) and \(\{y_n\} \) of an \(m \)-th order homogeneous, linear, constant coefficient recurrence relation, any linear combination of them

\[z_n = Ax_n + By_n \]

where \(A, B \) are constants, is also a solution of the same recurrence relation.
Simplest Case of General Solutions

Corollary (1)

Given two solutions \(\{x_n\} \) and \(\{y_n\} \) of an \(m \)-th order homogeneous, linear, constant coefficient recurrence relation, any linear combination of them \(z_n = Ax_n + By_n \) where \(A, B \) are constants, is also a solution of the same recurrence relation.

Proof.

Given \(c_m a_{n+m} + c_{m-1} a_{n+m-1} + \cdots + c_1 a_{n+1} + c_0 a_n = 0, \ c_m c_0 \neq 0, \ n \geq 0 \), if \(\{x_n\} \) and \(\{y_n\} \) are solutions, then

\[
\begin{align*}
c_m x_{n+m} + c_{m-1} x_{n+m-1} + \cdots + c_1 x_{n+1} + c_0 x_n &= 0 \quad | \cdot A \\
c_m y_{n+m} + c_{m-1} y_{n+m-1} + \cdots + c_1 y_{n+1} + c_0 y_n &= 0 \quad | \cdot B
\end{align*}
\]

If we multiply the first relation by \(A \), the second by \(B \) and then sum them up, we get

\[
c_m [Ax_{n+m} + By_{n+m}] + c_{m-1} [Ax_{n+m-1} + By_{n+m-1}] + \cdots + c_1 [Ax_{n+1} + By_{n+1}] + c_0 [Ax_n + By_n] = 0
\]

that is

\[
\begin{align*}
c_m z_{n+m} + c_{m-1} z_{n+m-1} + \cdots + c_1 z_{n+1} + c_0 z_n &= 0
\end{align*}
\]

which shows that \(z_n \) is a solution for the same recurrence relation.
Corollary (2)

If the recurrence relation is a non-homogeneous one, then the difference of any two solutions is a solution of the homogeneous version of the recurrence relation.

Proof.

Given \(c_m a^n + m + c_{m-1} a^{n-1} + \cdots + c_1 a^{n+1} + c_0 a^n = g(n), c_m c_0 \neq 0, n \geq 0\), if \(\{x_n\}\) and \(\{y_n\}\) are solutions, then they satisfy

\[
c_m x_n + m + c_{m-1} x_{n-1} + \cdots + c_1 x_{n+1} + c_0 x_n = g(n)\]
\[
c_m y_n + m + c_{m-1} y_{n-1} + \cdots + c_1 y_{n+1} + c_0 y_n = g(n)\]

and their difference gives

\[
c_m [x_n + m - y_n + m] + c_{m-1} [x_{n-1} + m - y_{n-1} + m] + \cdots + c_1 [x_{n+1} - y_{n+1}] + c_0 [x_n - y_n] = g(n) - g(n) = 0\]

\[
c_m z_n + m + c_{m-1} z_{n-1} + \cdots + c_1 z_{n+1} + c_0 z_n = 0\]
Simplest Case of General Solutions

Corollary (2)

If the recurrence relation is a non-homogeneous one, then the difference of any two solutions is a solution of the homogeneous version of the recurrence relation.

Proof.

Given \(c_m a_{n+m} + c_{m-1} a_{n+m-1} + \cdots + c_1 a_{n+1} + c_0 a_n = g(n) \), \(c_m c_0 \neq 0 \), \(n \geq 0 \), if \(\{x_n\} \) and \(\{y_n\} \) are solutions, then they satisfy

\[
c_m x_{n+m} + c_{m-1} x_{n+m-1} + \cdots + c_1 x_{n+1} + c_0 x_n = g(n)
\]

\[
c_m y_{n+m} + c_{m-1} y_{n+m-1} + \cdots + c_1 y_{n+1} + c_0 y_n = g(n)
\]

and their difference gives

\[
c_m [x_{n+m} - y_{n+m}] + c_{m-1} [x_{n+m-1} - y_{n+m-1}] + \cdots +
\]

\[
+ c_1 [x_{n+1} - y_{n+1}] + c_0 [x_n - y_n] = g(n) - g(n) = 0
\]

\[
c_m z_{n+m} + c_{m-1} z_{n+m-1} + \cdots + c_1 z_{n+1} + c_0 z_n = 0
\]
Example

Find the general solution of

\[a_{n+2} - 5a_{n+1} + 6a_n = 0, \quad n \geq 0. \]

Give also the particular solution satisfying \(a_0 = 0 \) and \(a_1 = 1 \).
Example

Find the general solution of

\[a_{n+2} - 5a_{n+1} + 6a_n = 0, \quad n \geq 0. \]

Give also the particular solution satisfying \(a_0 = 0 \) and \(a_1 = 1 \).

Solution. Since the associated characteristic equation is

\[\lambda^2 - 5\lambda + 6 = 0 \]

and has 2 distinct roots \(\lambda_1 = 2 \) and \(\lambda_2 = 3 \), the general solution for the recurrence relation, according to the theorem earlier on, is \(a_n = A_12^n + A_23^n \), \(n \geq 0 \), where \(A_1 \) and \(A_2 \) are 2 arbitrary constants. To find the particular solution, we need to determine \(A_1 \) and \(A_2 \) explicitly using the initial conditions \(a_0 = 0 \) and \(a_1 = 1 \). Hence we require

\[
\begin{align*}
 a_0 &= A_12^0 + A_23^0 = 0 \\
 a_1 &= A_12^1 + A_23^1 = 1
\end{align*}
\]

i.e.,

\[
\begin{align*}
 A_1 + A_2 &= 0 \\
 2A_1 + 3A_2 &= 1
\end{align*}
\]

which has the solution \(A_1 = -1, \ A_2 = 1 \) and, thus, the particular solution is \(a_n = -2^n + 3^n \) for \(n \geq 0 \).
Note

- It is often a good practice to check your answers, even if just partially.
Note

- It is often a good practice to check your answers, even if just partially.
- To check the above particular solution, we see

\[
\begin{align*}
 a_0 &= -20 + 30 = 0 \\
 a_1 &= -21 + 31 = 1 \\
 a_{n+2} - 5a_{n+1} + 6a_n &= (-2n^2 + 3n^2) - 5(-2n + 3n) + 6(-2n) \\
 &= -2n(2 - 5 	imes 2 + 6) \\
 &= -2n(0) = 0.
\end{align*}
\]

i.e., all conditions are satisfied.
Note

- It is often a good practice to check your answers, even if just partially.
- To check the above particular solution, we see
 \[a_0 = -2^0 + 3^0 = 0 \]
Note

- It is often a good practice to check your answers, even if just partially.
- To check the above particular solution, we see
 - $a_0 = -2^0 + 3^0 = 0$
 - $a_1 = -2^1 + 3^1 = 1$
Note

- It is often a good practice to check your answers, even if just partially.
- To check the above particular solution, we see

 $a_0 = -2^0 + 3^0 = 0$
 $a_1 = -2^1 + 3^1 = 1$

 $a_{n+2} - 5a_{n+1} + 6a_n = (-2^{n+2} + 3^{n+2}) - 5(-2^{n+1} + 3^{n+1}) + 6(-2^n + 3^n)$
 $= -2^n (2^2 - 5 \times 2 + 6) + 3^n (3^2 - 5 \times 3 + 6) = 0 \| 0$
Note

- It is often a good practice to check your answers, even if just partially.
- To check the above particular solution, we see
 - $a_0 = -2^0 + 3^0 = 0$
 - $a_1 = -2^1 + 3^1 = 1$
 - $a_{n+2} - 5a_{n+1} + 6a_n = (-2^{n+2} + 3^{n+2}) - 5(-2^{n+1} + 3^{n+1}) + 6(-2^n + 3^n)$
 $= -2^n (2^2 - 5 \times 2 + 6) + 3^n (3^2 - 5 \times 3 + 6) = 0$.

\[\text{i.e., all conditions are satisfied.} \]
It is often a good practice to check your answers, even if just partially.

To check the above particular solution, we see

- $a_0 = -2^0 + 3^0 = 0$
- $a_1 = -2^1 + 3^1 = 1$

$$a_{n+2} - 5a_{n+1} + 6a_n = (-2^{n+2} + 3^{n+2}) - 5(-2^{n+1} + 3^{n+1}) + 6(-2^n + 3^n)$$

$$= -2^n (2^2 - 5 \times 2 + 6) + 3^n (3^2 - 5 \times 3 + 6) = 0,$$

i.e., all conditions are satisfied.