Switching Circuits and Boolean Algebra

Ioan Despi

despi@turing.une.edu.au

University of New England

August 30, 2012

Outline

- **1** Switching Circuits
- 2 Boolean Algebra• Examples
- 3 Algebraic Equivalence• Examples
- 4 Sets connection with Boolean Algebra

Let's Start!

• Switching circuits are a way of describing pictorially the symbolic logic that you met earlier.

Let's Start!

- Switching circuits are a way of describing pictorially the symbolic logic that you met earlier.
- Boolean algebras are abstract mathematical constructions that unify the apparently different concepts of sets, symbolic logic and switching systems.

• A **switch** is a device which is attached to a point in an electrical circuit.

- A **switch** is a device which is attached to a point in an electrical circuit.
- The switch can be in either of two states, **open** or **closed**:

- A switch is a device which is attached to a point in an electrical circuit.
- The switch can be in either of two states, **open** or **closed**:
 - ▶ in the open state the switch does not allow current to flow through the point.

- A switch is a device which is attached to a point in an electrical circuit.
- The switch can be in either of two states, **open** or **closed**:
 - ▶ in the open state the switch does not allow current to flow through the point.
 - ▶ in the closed state the switch does allow current to flow through the point.

- A switch is a device which is attached to a point in an electrical circuit.
- The switch can be in either of two states, **open** or **closed**:
 - ▶ in the open state the switch does not allow current to flow through the point.
 - ▶ in the closed state the switch does allow current to flow through the point.
- We shall indicate a switch by means of the symbols

- A switch is a device which is attached to a point in an electrical circuit.
- The switch can be in either of two states, **open** or **closed**:
 - ▶ in the open state the switch does not allow current to flow through the point.
 - ▶ in the closed state the switch does allow current to flow through the point.
- We shall indicate a switch by means of the symbols

• In principle, " \mathbf{x} " indicates a sentence such that the associated switch is closed when x is true and it is open when x is false. Another notation is -(x)-.

• Two points (available to the outside) are connected by a **switching circuit** if and only if they are connected by wires on which a finite collection of switches are located.

- Two points (available to the outside) are connected by a **switching circuit** if and only if they are connected by wires on which a finite collection of switches are located.
- For example, the following

is a switching circuit, making use of an energy source (battery) an output (light) as well as a switching system.

• If switches x and z are open while switch y is closed, then the state of the switching system may be represented by

• If switches x and z are open while switch y is closed, then the state of the switching system may be represented by

• In order to describe switching systems formally and mathematically, we denote open and closed states by 0 and 1, respectively.

• If switches x and z are open while switch y is closed, then the state of the switching system may be represented by

- In order to describe switching systems formally and mathematically, we denote open and closed states by 0 and 1, respectively.
- It's obvious that the state space S for any switch or switching system is composed of two states: 0 (open) and 1 (closed), i.e., $S = \{0, 1\}$.

In a switching system, switches may be connected with one another
▶ in parallel: current flows between points a and b iff x ∨ y is true

▶ in series: current flows between points a and b iff $x \land y$ is true

▶ through the use of **complementary switches**: for any given switch x, the corresponding complementary switch, denoted by x', is always in the opposite state to that of x.

• Easy generalisation to the case of a finite number of switches x_1, x_2, \ldots, x_n :

- Easy generalisation to the case of a finite number of switches x_1, x_2, \ldots, x_n :
 - ▶ connected in parallel: current flows through the circuit iff $x_1 \lor x_2 \lor \ldots \lor x_n$ is true.

- Easy generalisation to the case of a finite number of switches x_1, x_2, \ldots, x_n :
 - connected in parallel: current flows through the circuit iff $x_1 \lor x_2 \lor \ldots \lor x_n$ is true.
 - connected in series: current flows through the circuit iff $x_1 \wedge x_2 \wedge \ldots \wedge x_n$ is true.

- Easy generalisation to the case of a finite number of switches x_1, x_2, \ldots, x_n :
 - connected in parallel: current flows through the circuit iff $x_1 \lor x_2 \lor \ldots \lor x_n$ is true.
 - connected in series: current flows through the circuit iff $x_1 \wedge x_2 \wedge \ldots \wedge x_n$ is true.
- For any two switches x and y, we use x + y and $x \cdot y$ to denote their parallel and series connections respectively.

- Easy generalisation to the case of a finite number of switches x_1, x_2, \ldots, x_n :
 - connected in parallel: current flows through the circuit iff $x_1 \lor x_2 \lor \ldots \lor x_n$ is true.
 - connected in series: current flows through the circuit iff $x_1 \wedge x_2 \wedge \ldots \wedge x_n$ is true.
- For any two switches x and y, we use x + y and $x \cdot y$ to denote their parallel and series connections respectively.
- The symbols "." and "+" here shouldn't be confused with those in the arithmetic, although there exist some similarities.

- As the special case in the above tables we have in particular 1 + 1 = 1.
- Notice a similarity between these tables and truth tables: here 0 can be considered as a F(alse) and 1 as a T(rue).

- As the special case in the above tables we have in particular 1 + 1 = 1.
- Notice a similarity between these tables and truth tables: here 0 can be considered as a F(alse) and 1 as a T(rue).
- The first two columns are constructed in a similar way to truth tables (with F's first instead of T's) to capture all possible combinations of 0's and 1's.

• A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.

- A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.
- It is a branch of mathematics developed around 1850 by George Boole as rules of *algebra* for logical thinking.

- A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.
- It is a branch of mathematics developed around 1850 by George Boole as rules of *algebra* for logical thinking.
- Two preliminary definitions:

- A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.
- It is a branch of mathematics developed around 1850 by George Boole as rules of *algebra* for logical thinking.
- Two preliminary definitions:
 - ▶ A binary operation on a set A is a mapping $f: A \times A \rightarrow A$, i.e., $f(a,b) \in A$ for any pair (a,b) with a and b both in A.

- A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.
- It is a branch of mathematics developed around 1850 by George Boole as rules of *algebra* for logical thinking.
- Two preliminary definitions:
 - ▶ A binary operation on a set A is a mapping $f: A \times A \rightarrow A$, i.e.,
 - $f(a,b) \in A$ for any pair (a,b) with a and b both in A.
 - $\star\,$ So a binary operation takes two elements of a set and produces a third.

- A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.
- It is a branch of mathematics developed around 1850 by George Boole as rules of *algebra* for logical thinking.
- Two preliminary definitions:
 - ▶ A binary operation on a set A is a mapping $f: A \times A \to A$, i.e.,
 - $f(a,b) \in A$ for any pair (a,b) with a and b both in A.
 - $\star\,$ So a binary operation takes two elements of a set and produces a third.
 - A unary operation on a set A is a mapping $f: A \to A$, i.e., $f(a) \in A$ for any a in A.

- A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.
- It is a branch of mathematics developed around 1850 by George Boole as rules of *algebra* for logical thinking.
- Two preliminary definitions:
 - ▶ A binary operation on a set A is a mapping $f: A \times A \rightarrow A$, i.e., $f(a, b) \in A$ for any pair (a, b) with a and b both in A.
 - $f(a, b) \in A$ for any pair (a, b) with a and b both in A.
 - $\star\,$ So a binary operation takes two elements of a set and produces a third.
 - ▶ A unary operation on a set A is a mapping $f: A \to A$, i.e.,
 - $f(a) \in A$ for any a in A.
 - \star So a unary operation takes one element of a set and produces another.

- A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.
- It is a branch of mathematics developed around 1850 by George Boole as rules of *algebra* for logical thinking.
- Two preliminary definitions:
 - ▶ A binary operation on a set A is a mapping $f: A \times A \rightarrow A$, i.e., $f(a, b) \in A$ for any pair (a, b) with a and b both in A.
 - $f(a, b) \in A$ for any pair (a, b) with a and b both in A.
 - $\star\,$ So a binary operation takes two elements of a set and produces a third.
 - ▶ A unary operation on a set A is a mapping $f: A \to A$, i.e.,
 - $f(a) \in A$ for any a in A.
 - \star So a unary operation takes one element of a set and produces another.

- A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.
- It is a branch of mathematics developed around 1850 by George Boole as rules of *algebra* for logical thinking.
- Two preliminary definitions:
 - ▶ A binary operation on a set A is a mapping $f: A \times A \to A$, i.e., $f(a, b) \in A$ for any pair (a, b) with a and b back in A
 - $f(a,b) \in A$ for any pair (a,b) with a and b both in A.
 - $\star\,$ So a binary operation takes two elements of a set and produces a third.
 - A unary operation on a set A is a mapping $f: A \to A$, i.e.,
 - $f(a) \in A$ for any a in A.
 - $\star\,$ So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space $S = \{0, 1\}$, the "+" and "." operation are binary and the " \prime " operation is unary.

- A Boolean algebra is essentially a mathematical abstraction and extension of switching systems and/or symbolic logic and the foundation of electronic design of computers.
- It is a branch of mathematics developed around 1850 by George Boole as rules of *algebra* for logical thinking.
- Two preliminary definitions:
 - ▶ A binary operation on a set A is a mapping $f: A \times A \to A$, i.e., $f(a, b) \in A$ for any pair (a, b) with a and b both in A
 - $f(a,b) \in A$ for any pair (a,b) with a and b both in A.
 - $\star\,$ So a binary operation takes two elements of a set and produces a third.
 - ▶ A unary operation on a set A is a mapping $f: A \rightarrow A$, i.e.,
 - $f(a) \in A$ for any a in A.
 - \star So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space $S = \{0, 1\}$, the "+" and "." operation are binary and the " \prime " operation is unary.

Solution. This is because for any switching systems x and y, we have that x + y, $x \cdot y$ and x' are all still switching systems with the same state space S. **Note.** Binary operator or operation has nothing to do with binary numbers.

Definition

A **Boolean algebra** is a set S on which are defined two binary operations + and \cdot and one unary operation ' and in which there are at least two distinct elements 0 and 1 such that the following properties hold for all $a, b, c \in S$

B1.	a + b	=	b+a	} commutativity
	$a \cdot b$	=	$b \cdot a$	f commutativity
B2.	(a+b)+c	=	a + (b + c)) associativity
	$(a \cdot b) \cdot c$	=	$a \cdot (b \cdot c)$	f associativity
B3.	$a + (b \cdot c)$	=	$(a+b)\cdot(a+c)$	distributivity
	$a \cdot (b+c)$	=	$(a \cdot b) + (a \cdot c)$	fallotitoativity
B4.	a + 0	=	a	identity relations
	$a \cdot 1$	=	a	f identity relations
B5.	a + a'	=	1	complementation
	$a \cdot a'$	=	0	f complementation

• The "0" and "1" in the above are just a notation, two special elements of S.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.
- Likewise the operators "+", "." and "' are also symbols, each representing the *designated* special roles.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.
- Likewise the operators "+", "." and "' are also symbols, each representing the *designated* special roles.
- A Boolean algebra is thus often represented by a tuple $(S, +, \cdot, ', 0, 1)$ which carries all the relevant components.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.
- Likewise the operators "+", "." and "' are also symbols, each representing the *designated* special roles.
- A Boolean algebra is thus often represented by a tuple $(S, +, \cdot, ', 0, 1)$ which carries all the relevant components.
- A variable $x \in S$ is called a **Boolean variable**.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.
- Likewise the operators "+", "." and "' are also symbols, each representing the *designated* special roles.
- A Boolean algebra is thus often represented by a tuple $(S, +, \cdot, ', 0, 1)$ which carries all the relevant components.
- A variable $x \in S$ is called a **Boolean variable**.
- A combination of some elements of S (variables) via the connectives + and \cdot and the complement \prime is a **Boolean expression**.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.
- Likewise the operators "+", "." and "' are also symbols, each representing the *designated* special roles.
- A Boolean algebra is thus often represented by a tuple $(S, +, \cdot, ', 0, 1)$ which carries all the relevant components.
- A variable $x \in S$ is called a **Boolean variable**.
- A combination of some elements of S (variables) via the connectives + and \cdot and the complement \prime is a **Boolean expression**.
- Among the 3 operations "'", "·" and "+" in a Boolean expression, the "'" operation has the highest *precedence*, then comes the "·" operation, and then the "+" operation.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.
- Likewise the operators "+", "." and "' are also symbols, each representing the *designated* special roles.
- A Boolean algebra is thus often represented by a tuple $(S, +, \cdot, ', 0, 1)$ which carries all the relevant components.
- A variable $x \in S$ is called a **Boolean variable**.
- A combination of some elements of S (variables) via the connectives + and \cdot and the complement \prime is a **Boolean expression**.
- Among the 3 operations "'", "·" and "+" in a Boolean expression, the "'" operation has the highest *precedence*, then comes the "·" operation, and then the "+" operation.
 - For example, $a + b' \cdot c$ in fact means $a + ((b') \cdot c)$.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.
- Likewise the operators "+", "." and "' are also symbols, each representing the *designated* special roles.
- A Boolean algebra is thus often represented by a tuple $(S, +, \cdot, ', 0, 1)$ which carries all the relevant components.
- A variable $x \in S$ is called a **Boolean variable**.
- A combination of some elements of S (variables) via the connectives + and \cdot and the complement \prime is a **Boolean expression**.
- Among the 3 operations "'", "." and "+" in a Boolean expression, the "'" operation has the highest *precedence*, then comes the "." operation, and then the "+" operation.
 - For example, $a + b' \cdot c$ in fact means $a + ((b') \cdot c)$.
- Each property in the definition of a Boolean algebra has its **dual** as part of the definition.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.
- Likewise the operators "+", "." and "' are also symbols, each representing the *designated* special roles.
- A Boolean algebra is thus often represented by a tuple $(S, +, \cdot, ', 0, 1)$ which carries all the relevant components.
- A variable $x \in S$ is called a **Boolean variable**.
- A combination of some elements of S (variables) via the connectives + and \cdot and the complement \prime is a **Boolean expression**.
- Among the 3 operations "'", "." and "+" in a Boolean expression, the "'" operation has the highest *precedence*, then comes the "." operation, and then the "+" operation.
 - For example, $a + b' \cdot c$ in fact means $a + ((b') \cdot c)$.
- Each property in the definition of a Boolean algebra has its **dual** as part of the definition.
 - The dual is obtained by interchanging + with \cdot and 0 with 1.

- The "0" and "1" in the above are just a notation, two special elements of S.
- They are *symbols* rather than normal numerical values.
- Likewise the operators "+", "." and "' are also symbols, each representing the *designated* special roles.
- A Boolean algebra is thus often represented by a tuple $(S, +, \cdot, ', 0, 1)$ which carries all the relevant components.
- A variable $x \in S$ is called a **Boolean variable**.
- A combination of some elements of S (variables) via the connectives + and \cdot and the complement \prime is a **Boolean expression**.
- Among the 3 operations "'", "." and "+" in a Boolean expression, the "'" operation has the highest *precedence*, then comes the "." operation, and then the "+" operation.
 - For example, $a + b' \cdot c$ in fact means $a + ((b') \cdot c)$.
- Each property in the definition of a Boolean algebra has its **dual** as part of the definition.
 - The dual is obtained by interchanging + with \cdot and 0 with 1.
 - ▶ Unary operation / remains unchanged.

Theorem

$ \begin{array}{ll} all \ a, b, c \in S \\ P1. & a+a=a ; a \cdot a=a . \\ P2. & a+1=1 ; a \cdot 0=0 . \\ P3. & (a')'=a . \\ P4. & a+a \cdot b=a . \end{array} \qquad (idempotent \ law (double \ complete \ absorption \ law (absorption \ law (abso$,
P1. $a + a = a$; $a \cdot a = a$.(idempotent laP2. $a + 1 = 1$; $a \cdot 0 = 0$.(dominance lawP3. $(a')' = a$.(double completeP4. $a + a \cdot b = a$.(absorption law	- 1
P2. $a+1=1$; $a \cdot 0 = 0$.(dominance lawP3. $(a')' = a$.(double completeP4. $a+a \cdot b = a$.(absorption law	ws)
P3. $(a')' = a$.(double completed)P4. $a + a \cdot b = a$.(absorption law)	vs)
$P4. a+a \cdot b = a. (absorption \ law)$	ment
	v)
P5. If $a + c = 1$, $a \cdot c = 0$, then $c = a'$. (uniqueness of	inver
P6. If $a \cdot c = b \cdot c$, $a \cdot c' = b \cdot c'$, then $a = b$. (cancellation be	iw)
P7. If $a + c = b + c$, $a + c' = b + c'$, then $a = b$. (cancellation be	w)

Proof of the Theorem

Proof.

For P1, the first half is derived from B3–B5 by

$$a + a \stackrel{B4}{=} (a + a) \cdot 1 \stackrel{B5}{=} (a + a) \cdot (a + a') \stackrel{B3}{=} a + (a \cdot a') \stackrel{B5}{=} a + 0 \stackrel{B4}{=} a$$

where the names on the equality sign indicate the property being used, while the second half is derived by

$$a \stackrel{B4}{=} a \cdot 1 \stackrel{B5}{=} a \cdot (a + a') \stackrel{B3}{=} a \cdot a + a \cdot a' \stackrel{B5}{=} a \cdot a + 0 \stackrel{B4}{=} a \cdot a .$$

For P2, we need to observe

$$a + 1 \stackrel{B5}{=} a + (a + a') \stackrel{B2}{=} (a + a) + a' \stackrel{P1}{=} a + a' \stackrel{B5}{=} 1$$
$$a \cdot 0 \stackrel{B5}{=} a \cdot (a \cdot a') \stackrel{B2}{=} (a \cdot a) \cdot a' \stackrel{P1}{=} a \cdot a' \stackrel{B5}{=} 0.$$

Proof of the Theorem

Proof.

The proof of P3 is

$$a'' \stackrel{B4}{=} a'' \cdot 1 \stackrel{B5}{=} a'' \cdot (a+a') \stackrel{B3}{=} a'' \cdot a + a'' \cdot a' \stackrel{B5}{=} a'' \cdot a + 0 \stackrel{B5}{=} a'' \cdot a + 0 \stackrel{B5}{=} a'' \cdot a + a' \cdot a \stackrel{B3}{=} (a''+a') \cdot a \stackrel{B5}{=} 1 \cdot a \stackrel{B4}{=} a.$$

The proof of P4 is

$$a + a \cdot b \stackrel{B4}{=} a \cdot 1 + a \cdot b \stackrel{B3}{=} a \cdot (1 + b) \stackrel{B1,P2}{=} a \cdot 1 \stackrel{B4}{=} a$$
.

The other properties, P5–P7, can be derived similarly.

Note. An immediate corollary of P5 in the above theorem is that 0' = 1 and 1' = 0 hold on any Boolean algebra $(S, +, \cdot, ', 0, 1)$.

Ioan Despi – AMTH140

Example

Switching system $(S, +, \cdot, ', 0, 1)$ with $S = \{0, 1\}$ is a Boolean algebra.

Example

Switching system $(S, +, \cdot, ', 0, 1)$ with $S = \{0, 1\}$ is a Boolean algebra.

Solution. We need to show B1 - B5, by letting "+", " \cdot " and " \prime " specifically denote switches in parallel, in series and in complementation respectively. The identities in B1 are valid because

• The proof of B2 – B5 is elementary.

• Hence we'll simply show only the first half of B3, i.e. $a + (b \cdot c) = (a + b) \cdot (a + c)$.

a	b	c	$b \cdot c$	a+b	a + c	$a + (b \cdot c)$	$(a+b)\cdot(a+c)$
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

all corresponding values exactly same

- Hence we'll simply show only the first half of B3, i.e. $a + (b \cdot c) = (a + b) \cdot (a + c)$.
- We'll show the identity by the use of the evaluation table below

a	b	c	$b \cdot c$	a+b	a + c	$a + (b \cdot c)$	$(a+b)\cdot(a+c)$
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

all corresponding values exactly same

Example

Let \mathbb{R} be the set of real numbers, $+, \times$ be the normal addition and multiplication, $0, 1 \in \mathbb{R}$ be the normal numbers. If we define \prime by x' = 1 - x for any $x \in \mathbb{R}$, then is $(\mathbb{R}, +, \times, ', 0, 1)$ a Boolean algebra?

Example

Let \mathbb{R} be the set of real numbers, $+, \times$ be the normal addition and multiplication, $0, 1 \in \mathbb{R}$ be the normal numbers. If we define \prime by x' = 1 - x for any $x \in \mathbb{R}$, then is $(\mathbb{R}, +, \times, ', 0, 1)$ a Boolean algebra?

Solution. No. Because neither the first half of B3 nor the second half of B5 is satisfied. For example,

$$1 + (2 \times 3) \neq (1+2) \times (1+3).$$

Example

Suppose $S = \{1, 2, 3, 5, 6, 10, 15, 30\}$. Let a + b denote the least common multiple of a and b, $a \cdot b$ denote the greatest common divisor of a and b, and $a' = \frac{30}{a}$. Prove $(S, +, \cdot, ', 1, 30)$ is a Boolean algebra.

• Switching systems and symbolic logic are essentially the same.

- Switching systems and symbolic logic are essentially the same.
- Furthermore they both form a Boolean algebra $(S, +, \bullet, \cdot, 0, 1)$ on a set $S = \{0, 1\}$, where

- Switching systems and symbolic logic are essentially the same.
- Furthermore they both form a Boolean algebra $(S, +, \bullet, \flat, 0, 1)$ on a set $S = \{0, 1\}$, where
 - ▶ 0 is open in the switching systems and is F in the symbolic logic, while

- Switching systems and symbolic logic are essentially the same.
- Furthermore they both form a Boolean algebra $(S, +, \bullet, \flat, 0, 1)$ on a set $S = \{0, 1\}$, where
 - ▶ 0 is open in the switching systems and is F in the symbolic logic, while
 - ▶ 1 is closed in the switching systems and is T in the symbolic logic.

- Switching systems and symbolic logic are essentially the same.
- Furthermore they both form a Boolean algebra $(S, +, \bullet, \cdot, 0, 1)$ on a set $S = \{0, 1\}$, where
 - ▶ 0 is open in the switching systems and is F in the symbolic logic, while
 - ▶ 1 is closed in the switching systems and is T in the symbolic logic.
- The correspondence can be seen in the following table

- Switching systems and symbolic logic are essentially the same.
- Furthermore they both form a Boolean algebra $(S, +, \bullet, \cdot, 0, 1)$ on a set $S = \{0, 1\}$, where
 - ▶ 0 is open in the switching systems and is F in the symbolic logic, while
 - ▶ 1 is closed in the switching systems and is T in the symbolic logic.
- The correspondence can be seen in the following table

- Switching systems and symbolic logic are essentially the same.
- Furthermore they both form a Boolean algebra $(S, +, \bullet, \cdot, 0, 1)$ on a set $S = \{0, 1\}$, where
 - ▶ 0 is open in the switching systems and is F in the symbolic logic, while
 - ▶ 1 is closed in the switching systems and is T in the symbolic logic.
- The correspondence can be seen in the following table

Boolean algebra	Switching systems	Symbolic logic	
$S = \{0, 1\}$	{open, closed}	$\{F,T\}$	
+	x + y (in parallel)	$p \lor q$ ("or")	
•	$x \cdot y$ (in series)	$p \wedge q$ ("and")	
,	x' (complement)	$\sim p \pmod{1}$	
0	circuit open	contradiction	
1	circuit closed	tautology	

• Hence properties B1–B5 and P1–P7 will also hold in symbolic logic, when "+", "·", "ℓ", "0" and "1" are replaced by "∨", "∧", "∼", contradiction and tautology respectively.

- Hence properties B1–B5 and P1–P7 will also hold in symbolic logic, when "+", "·", "ℓ", "0" and "1" are replaced by "∨", "∧", "∼", contradiction and tautology respectively.
 - ▶ Hence, for example,

- Hence properties B1–B5 and P1–P7 will also hold in symbolic logic, when "+", "·", "ℓ", "0" and "1" are replaced by "∨", "∧", "∼", contradiction and tautology respectively.
 - ▶ Hence, for example,

- Hence properties B1–B5 and P1–P7 will also hold in symbolic logic, when "+", "·", "ℓ", "0" and "1" are replaced by "∨", "∧", "∼", contradiction and tautology respectively.
 - ▶ Hence, for example,

 $a \vee (b \wedge c) \equiv (a \vee b) \wedge (a \vee c), \quad a \wedge (b \vee c) \equiv (a \wedge b) \vee (a \wedge c),$

- Hence properties B1–B5 and P1–P7 will also hold in symbolic logic, when "+", "·", "ℓ", "0" and "1" are replaced by "∨", "∧", "∼", contradiction and tautology respectively.
 - ▶ Hence, for example,

 $a \vee (b \wedge c) \equiv (a \vee b) \wedge (a \vee c), \quad a \wedge (b \vee c) \equiv (a \wedge b) \vee (a \wedge c),$

 $a \lor a \equiv a, \quad a \land a \equiv a, \quad \sim (\sim a) \equiv a, \quad a \lor \bot \equiv a, \quad a \land \top \equiv a,$

- Hence properties B1–B5 and P1–P7 will also hold in symbolic logic, when "+", "·", "ℓ", "0" and "1" are replaced by "∨", "∧", "∼", contradiction and tautology respectively.
 - ▶ Hence, for example,

 $a \vee (b \wedge c) \equiv (a \vee b) \wedge (a \vee c), \quad a \wedge (b \vee c) \equiv (a \wedge b) \vee (a \wedge c),$

$$a \lor a \equiv a, \quad a \land a \equiv a, \quad \sim (\sim a) \equiv a, \quad a \lor \bot \equiv a, \quad a \land \top \equiv a,$$

 $a \vee (a \wedge b) \equiv a, \quad a \wedge (\sim a) \equiv \bot, \quad a \vee (\sim a) \equiv \top, \quad a \wedge \bot \equiv \bot, \quad a \vee \top \equiv \top$

hold for any propositions a, b and c, where \perp represents a contradiction and \top represents a tautology.

Example

Convert $(p \lor q) \to r$ into the corresponding Boolean expression.

Example

Convert $(p \lor q) \to r$ into the corresponding Boolean expression.

Solution. Since $p \to q$ is equivalent to $(\sim p) \lor q$, we see that $(p \lor q) \to r$ is equivalent to $(\sim (p \lor q)) \lor r$ which is thus converted to (p+q)'+r.

Example 6 (De Morgan's Laws)

Example

Let $(S, +, \cdot, ', 0, 1)$ be a Boolean algebra, then for any $x, y \in S$

$$(x+y)' = x' \cdot y',$$
$$(x \cdot y)' = x' + y'.$$

Example 6 (De Morgan's Laws)

Example

Let $(S, +, \cdot, ', 0, 1)$ be a Boolean algebra, then for any $x, y \in S$

$$(x+y)' = x' \cdot y',$$
$$(x \cdot y)' = x' + y'.$$

Solution. Proof obvious from the theorem in the previous section.

Example 7

Example

Suppose $(\mathbb{T}, \clubsuit, \diamondsuit, \heartsuit, \sqcup, \sqcap)$ is a Boolean algebra. Show $(\sqcup^{\heartsuit}) \clubsuit \sqcup = \sqcap$.

Example 7

Example

Suppose $(\mathbb{T}, \clubsuit, \diamondsuit, \heartsuit, \sqcup, \sqcap)$ is a Boolean algebra. Show $(\sqcup^{\heartsuit}) \clubsuit \sqcup = \sqcap$.

Solution. Recall that when we say $(\mathbb{T}, \clubsuit, \diamondsuit, \heartsuit, \sqcup, \sqcap)$ is a Boolean algebra, the tuple *means* that

 \clubsuit , \diamondsuit and \heartsuit correspond respectively to the

"+", "·" and "
/" operations entailed by a Boolean algebra, and that

 \sqcup and \sqcap correspond respectively to the

"0" and "1" elements possessed by the Boolean algebra.

Hence (\sqcup^{\heartsuit}) , $\sqcup = \sqcap$ is the same as (0') + 0 = 1 and is thus obviously true.

Example 8

Example

Let $B = \{0, 1\}$ and $(B, +, \cdot, ', 0, 1)$ be a Boolean algebra. Let B^n denote the set of all the tuples $(x_1, x_2, ..., x_n)$ with $x_1, ..., x_n$ being any elements of B, i.e.

$$B^{n} \stackrel{\text{def}}{=} \{ (x_{1}, ..., x_{n}) \mid x_{1} \in B, ..., x_{n} \in B \}$$

Then $(B^n, +, \bullet, ', 0, 1)$ is also a Boolean algebra if

$$\mathbf{0} = \underbrace{(0, \dots, 0)}_{n}, \\
 \mathbf{1} = (1, \dots, 1), \\
 \mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n), \\
 \mathbf{x} \bullet \mathbf{y} = (x_1 \cdot y_1, \dots, x_n \cdot y_n), \\
 \mathbf{x'} = (x'_1, \dots, x'_n).$$

• If we make the correspondence between

 $\varnothing, U, \cup, \cap, '$ and $0, 1, +, \cdot, '$

for sets and Boolean algebra respectively, we see that properties S1–S5 are exactly those B1–B5 for the definition of Boolean algebra.

• If we make the correspondence between

 $\varnothing, U, \cup, \cap, '$ and $0, 1, +, \cdot, '$

for sets and Boolean algebra respectively, we see that properties S1–S5 are exactly those B1–B5 for the definition of Boolean algebra.

Hence for any nonempty set S, for instance, (P(S), ∪, ∩, ', Ø, S) is a Boolean algebra.

• If we make the correspondence between

 $\varnothing, U, \cup, \cap, '$ and $0, 1, +, \cdot, '$

for sets and Boolean algebra respectively, we see that properties S1–S5 are exactly those B1–B5 for the definition of Boolean algebra.

Hence for any nonempty set S, for instance, (P(S), ∪, ∩, ', Ø, S) is a Boolean algebra.

• If we make the correspondence between

$$\emptyset, U, \cup, \cap, '$$
 and $0, 1, +, \cdot, '$

for sets and Boolean algebra respectively, we see that properties S1–S5 are exactly those B1–B5 for the definition of Boolean algebra.

Hence for any nonempty set S, for instance, (P(S), ∪, ∩, ', Ø, S) is a Boolean algebra.

Theorem

If \mathcal{B} is a Boolean algebra with exactly n elements then $n = 2^m$ for some m. Furthermore \mathcal{B} and $(\mathcal{P}(\{1, 2, \dots m\}), \cup, \cap, \prime, \emptyset, \{1, 2, \dots, m\})$ essentially represent the same Boolean algebra.

• If we make the correspondence between

$$\emptyset, U, \cup, \cap, '$$
 and $0, 1, +, \cdot, '$

for sets and Boolean algebra respectively, we see that properties S1–S5 are exactly those B1–B5 for the definition of Boolean algebra.

Hence for any nonempty set S, for instance, (P(S), ∪, ∩, ', Ø, S) is a Boolean algebra.

Theorem

If \mathcal{B} is a Boolean algebra with exactly n elements then $n = 2^m$ for some m. Furthermore \mathcal{B} and $(\mathcal{P}(\{1, 2, \cdots m\}), \cup, \cap, \prime, \emptyset, \{1, 2, \cdots, m\})$ essentially represent the same Boolean algebra.

Example

9. Let $U = \{2, 3\}$ and $S = \mathcal{P}(U)$. Then $(S, \cup, \cap, ', \emptyset, U)$ is a Boolean algebra. Notice that the set S in this case contains more than 2 elements.

