
Switching Circuits and Boolean Algebra

Ioan Despi

despi@turing.une.edu.au

University of New England

August 30, 2012



Outline

1 Switching Circuits

2 Boolean Algebra
Examples

3 Algebraic Equivalence
Examples

4 Sets connection with Boolean Algebra

Ioan Despi – AMTH140 2 of 26



Let’s Start!

Switching circuits are a way of describing pictorially the symbolic logic
that you met earlier.

Boolean algebras are abstract mathematical constructions that unify the
apparently different concepts of sets, symbolic logic and switching
systems.
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Switches

A switch is a device which is attached to a point in an electrical circuit.

The switch can be in either of two states, open or closed:

I in the open state the switch does not allow current to flow through the
point.

I in the closed state the switch does allow current to flow through the point.

We shall indicate a switch by means of the symbols

open closed

x x

In principle, ”x“ indicates a sentence such that the associated switch is
closed when x is true and it is open when x is false. Another notation is
– lx –.
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Switching Circuits

Two points (available to the outside) are connected by a switching
circuit if and only if they are connected by wires on which a finite
collection of switches are located.

For example, the following

x

y

z

switching system

light

b
at

te
ry

switches

is a switching circuit, making use of an energy source (battery) an
output (light) as well as a switching system.
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Switching Circuits

If switches x and z are open while switch y is closed, then the state of the
switching system may be represented by

x

y

z

In order to describe switching systems formally and mathematically, we
denote open and closed states by 0 and 1, respectively.
It’s obvious that the state space S for any switch or switching system is
composed of two states: 0 (open) and 1 (closed), i.e., S = {0, 1}.
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Switching Circuits
In a switching system, switches may be connected with one another
I in parallel: current flows between points a and b iff x ∨ y is true

x

y

a b

y

x

I in series: current flows between points a and b iff x ∧ y is true

x y
a x by

I through the use of complementary switches: for any given switch x,
the corresponding complementary switch, denoted by x′, is always in the
opposite state to that of x.

x
a x

x’

b

a bx’
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Switching Circuits

Easy generalisation to the case of a finite number of switches
x1, x2, . . . , xn:

I connected in parallel:
current flows through the circuit iff x1 ∨ x2 ∨ . . . ∨ xn is true.

I connected in series:
current flows through the circuit iff x1 ∧ x2 ∧ . . . ∧ xn is true.

For any two switches x and y, we use x + y and x · y to denote their
parallel and series connections respectively.
The symbols ”.” and ”+” here shouldn’t be confused with those in the
arithmetic, although there exist some similarities.
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The state of compound switches
With the above introduced notations, we can represent the state of, or the
effect of switches in parallel, in series and so on by the following tables

Parallel Series Complement
x y x + y x y x · y x x′

0 0 0 0 0 0 0 1
0 1 1 0 1 0 1 0

�
�
�
�7

switch x is closed

1 0

C
C
CCO

switch y is open

1

Q
Q

Q
Q

Q
QQk

switching system with x and y in parallel is closed

1 0 0
1 1 1 1 1 1

As the special case in the above tables we have in particular 1 + 1 = 1.
Notice a similarity between these tables and truth tables: here 0 can be
considered as a F(alse) and 1 as a T(rue).
The first two columns are constructed in a similar way to truth tables
(with F’s first instead of T’s) to capture all possible combinations of 0’s
and 1’s.
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Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.

It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.
Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.
It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.

Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.
It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.
Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.
It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.
Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.
It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.
Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.
It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.
Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.
It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.
Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.
It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.
Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.
It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.
Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

A Boolean algebra is essentially a mathematical abstraction and
extension of switching systems and/or symbolic logic and the foundation
of electronic design of computers.
It is a branch of mathematics developed around 1850 by George Boole as
rules of algebra for logical thinking.
Two preliminary definitions:

I A binary operation on a set A is a mapping f : A×A→ A, i.e.,
f(a, b) ∈ A for any pair (a, b) with a and b both in A.

F So a binary operation takes two elements of a set and produces a third.

I A unary operation on a set A is a mapping f : A→ A, i.e.,
f(a) ∈ A for any a in A.

F So a unary operation takes one element of a set and produces another.

Example

For switching systems with state space S={0, 1}, the “+” and “·” operation
are binary and the “ ′ ” operation is unary.

Solution. This is because for any switching systems x and y, we have that
x + y, x · y and x′ are all still switching systems with the same state space S.
Note. Binary operator or operation has nothing to do with binary numbers.

Ioan Despi – AMTH140 10 of 26



Boolean Algebra

Definition
A Boolean algebra is a set S on which are defined two binary operations +
and · and one unary operation ′ and in which there are at least two
distinct elements 0 and 1 such that the following properties hold for all a, b, c ∈ S

B1. a + b = b + a
}

commutativity
a · b = b · a

B2. (a + b) + c = a + (b + c) }
associativity(a · b) · c = a · (b · c)

B3. a + (b · c) = (a + b) · (a + c) }
distributivity

a · (b + c) = (a · b) + (a · c)
B4. a + 0 = a }

identity relations
a · 1 = a

B5. a + a′ = 1 }
complementation

a · a′ = 0
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Boolean Algebra

The ”0” and ”1” in the above are just a notation, two special elements of
S.

They are symbols rather than normal numerical values.
Likewise the operators “+”, “·” and “′” are also symbols, each
representing the designated special roles.
A Boolean algebra is thus often represented by a tuple (S, +, ·,′ , 0, 1)
which carries all the relevant components.
A variable x ∈ S is called a Boolean variable.
A combination of some elements of S (variables) via the connectives +
and · and the complement ′ is a Boolean expression.
Among the 3 operations “ ′ ”, “·” and “+” in a Boolean expression, the
“ ′ ” operation has the highest precedence, then comes the “·” operation,
and then the “+” operation.

I For example, a + b′ · c in fact means a + ((b′) · c).

Each property in the definition of a Boolean algebra has its dual as part
of the definition.

I The dual is obtained by interchanging + with · and 0 with 1.
I Unary operation ′ remains unchanged.
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Boolean Algebra

Theorem

Let (S, +, ·,′ , 0, 1) be a Boolean algebra. Then the following properties hold for
all a, b, c ∈ S
P1. a + a = a ; a · a = a . (idempotent laws)
P2. a + 1 = 1 ; a · 0 = 0 . (dominance laws)
P3. (a′)′ = a . (double complement)
P4. a + a · b = a . (absorption law)
P5. If a + c = 1, a · c = 0, then c = a′. (uniqueness of inverses)
P6. If a · c = b · c, a · c′ = b · c′, then a = b. (cancellation law)
P7. If a + c = b + c, a + c′ = b + c′, then a = b. (cancellation law)
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Proof of the Theorem

Proof.
For P1, the first half is derived from B3–B5 by

a + a
B4= (a + a) · 1 B5= (a + a) · (a + a′) B3= a + (a · a′) B5= a + 0 B4= a ,

where the names on the equality sign indicate the property being used,
while the second half is derived by

a
B4= a · 1 B5= a · (a + a′) B3= a · a + a · a′ B5= a · a + 0 B4= a · a .

For P2, we need to observe

a + 1 B5= a + (a + a′) B2= (a + a) + a′
P1= a + a′

B5= 1

a · 0 B5= a · (a · a′) B2= (a · a) · a′ P1= a · a′ B5= 0 .
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Proof of the Theorem

Proof.
The proof of P3 is

a′′
B4= a′′ · 1 B5= a′′ · (a + a′) B3= a′′ · a + a′′ · a′ B5= a′′ · a + 0 B5=

a′′ · a + a′ · a B3= (a′′ + a′) · a B5= 1 · a B4= a .

The proof of P4 is

a + a · b B4= a · 1 + a · b B3= a · (1 + b)
B1,P2

= a · 1 B4= a .

The other properties, P5–P7, can be derived similarly.

Note. An immediate corollary of P5 in the above theorem is that 0′ = 1 and
1′ = 0 hold on any Boolean algebra (S, +, ·,′ , 0, 1).
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Example 2

Example

Switching system (S, +, ·,′ , 0, 1) with S = {0, 1} is a Boolean algebra.

Solution. We need to show B1 – B5, by letting ”+”, ”·” and ” ′ ” specifically
denote switches in parallel, in series and in complementation respectively.
The identities in B1 are valid because

a

a

b

b

b

b

a

a

=

=

i.e.  a + b = b + a

i.e.  a. b = b . a

The proof of B2 – B5 is elementary.
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Example 2

Hence we’ll simply show only the first half of B3, i.e.
a + (b · c) = (a + b) · (a + c).

We’ll show the identity by the use of the evaluation table below

a b c b · c a + b a + c a + (b · c) (a + b) · (a + c)
0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1︸ ︷︷ ︸

all corresponding values exactly same
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Example 3

Example

Let R be the set of real numbers, +,× be the normal addition and
multiplication, 0, 1 ∈ R be the normal numbers. If we define ′ by x′ = 1− x for
any x ∈ R, then is (R, +,×,′ , 0, 1) a Boolean algebra?

Solution. No. Because neither the first half of B3 nor the second half of B5
is satisfied. For example,

1 + (2× 3) 6= (1 + 2)× (1 + 3).
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Example 4

Example

Suppose S = {1, 2, 3, 5, 6, 10, 15, 30}. Let a + b denote the least common
multiple of a and b, a · b denote the greatest common divisor of a and b, and

a′ =
30
a

. Prove (S, +, ·,′ , 1, 30) is a Boolean algebra.
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Algebraic Equivalence

Switching systems and symbolic logic are essentially the same.

Furthermore they both form a Boolean algebra (S,+, •, ’,0,1) on a set
S = {0,1}, where

I 0 is open in the switching systems and is F in the symbolic logic, while
I 1 is closed in the switching systems and is T in the symbolic logic.

The correspondence can be seen in the following table

Boolean algebra Switching systems Symbolic logic
S = {0,1} {open, closed} {F, T}

+ x + y (in parallel) p ∨ q (“or”)
• x · y (in series) p ∧ q (“and”)

’ x′ (complement) ∼ p (“not”)
0 circuit open contradiction
1 circuit closed tautology
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Algebraic Equivalence

Hence properties B1–B5 and P1–P7 will also hold in symbolic logic, when
“+”, “·”, “′”, “0” and “1” are replaced by “∨”, “∧”, “∼”, contradiction
and tautology respectively.

I Hence, for example,

a ∨ (b ∧ c) ≡ (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c),

a ∨ a ≡ a, a ∧ a ≡ a, ∼ (∼ a) ≡ a, a ∨ ⊥ ≡ a, a ∧ > ≡ a,

a∨ (a∧ b) ≡ a, a∧ (∼ a) ≡ ⊥, a∨ (∼ a) ≡ >, a∧⊥ ≡ ⊥, a∨> ≡ >

hold for any propositions a, b and c, where ⊥ represents a contradiction
and > represents a tautology.
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Example 5

Example

Convert (p ∨ q)→ r into the corresponding Boolean expression.

Solution. Since p→ q is equivalent to (∼ p) ∨ q,
we see that (p ∨ q)→ r is equivalent to (∼(p ∨ q)) ∨ r
which is thus converted to (p + q)′ + r.
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Example 6 (De Morgan’s Laws)

Example

Let (S, +, ·,′ , 0, 1) be a Boolean algebra, then for any x, y ∈ S

(x + y)′ = x′ · y′,

(x · y)′ = x′ + y′.

Solution. Proof obvious from the theorem in the previous section.
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Example 7

Example

Suppose (T,♣,♦,♥,t,u) is a Boolean algebra. Show (t♥)♣t = u.

Solution. Recall that when we say (T,♣,♦,♥,t,u) is a Boolean algebra,
the tuple means that
♣, ♦ and ♥ correspond respectively to the
“+”, “·” and “′” operations entailed by a Boolean algebra, and that
t and u correspond respectively to the
“0” and “1” elements possessed by the Boolean algebra.
Hence (t♥)♣t = u is the same as (0′) + 0 = 1 and is thus obviously true.
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Example 8

Example

Let B = {0, 1} and (B, +, ·, ′, 0, 1) be a Boolean algebra.
Let Bn denote the set of all the tuples (x1, x2, ..., xn) with x1, ..., xn being any
elements of B, i.e.

Bn def= {(x1, ..., xn) | x1 ∈ B, ..., xn ∈ B}

Then (Bn, +, •, ’, 0, 1) is also a Boolean algebra if

0 =

n 0′s︷ ︸︸ ︷
(0, · · · , 0) ,

1 = (1, · · · , 1) ,

x + y = (x1 + y1, · · · , xn + yn) ,

x • y = (x1 · y1, · · · , xn · yn) ,

x’ = (x′1, · · · , x′n) .
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Sets connection with Boolean Algebra

If we make the correspondence between

∅, U, ∪, ∩, ′ and 0, 1, +, ·, ′

for sets and Boolean algebra respectively, we see that properties S1–S5
are exactly those B1–B5 for the definition of Boolean algebra.

Hence for any nonempty set S, for instance, (P(S),∪,∩, ′, ∅, S) is a
Boolean algebra.

Theorem
If B is a Boolean algebra with exactly n elements then n = 2m for some m.
Furthermore B and (P({1, 2, · · ·m}),∪,∩, ′, ∅, {1, 2, · · · , m}) essentially
represent the same Boolean algebra.

Example

9. Let U = {2, 3} and S = P(U). Then (S,∪,∩,′ , ∅, U) is a Boolean algebra.
Notice that the set S in this case contains more than 2 elements.
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