Graph Isomorphism and Matrix Representations

Ioan Despi
despi@turing.une.edu.au

University of New England

July 26, 2013
Outline
Graph Isomorphism

Definition

Two graphs G_1 and G_2 are **isomorphic** if there exist one-to-one and onto functions (bijections) $g: V(G_1) \rightarrow V(G_2)$ and $h: E(G_1) \rightarrow E(G_2)$ such that for any $v \in V(G_1)$ and any $e \in E(G_1)$,

v is an endpoint of e if and only if $g(v)$ is an endpoint of $h(e)$.

The pair of functions g and h is called a **graph isomorphism**.

- Roughly speaking, graphs G_1 and G_2 are isomorphic to each other if they are “essentially” the same.
- More intuitively, if graphs are made of elastic bands (edges) and knots (vertices), then two graphs are isomorphic to each other if and only if one can stretch, shrink and twist one graph so that it can sit right on top of the other graph, vertex to vertex and edge to edge.
- The isomorphism functions g and h will thus provide the one-to-one correspondences for the vertices and the edges respectively.
Example

Show that graphs G_1 and G_2 below are isomorphic.

Let g and h be given by

$$g(v_1) = w_2, \quad g(v_2) = w_1, \quad g(v_3) = w_4, \quad g(v_4) = w_3,$$

$$h(e_1) = f_2, \quad h(e_2) = f_1, \quad h(e_3) = f_4, \quad h(e_4) = f_3, \quad h(e_5) = f_5$$

which can be alternatively represented in the diagrams below.
Graph Isomorphism Example

\[V(G_1) \xrightarrow{g} V(G_2) \]

\[E(G_1) \xrightarrow{h} E(G_2) \]
Graph Isomorphism Example

- We now verify the *preservation of endpoints* under g and h

\[
\begin{align*}
e_1 & \triangleq \{v_1, v_2\} \rightarrow f_2 \triangleq \{w_1, w_2\} = \{g(v_1), g(v_2)\} \\
e_2 & \triangleq \{v_2, v_4\} \rightarrow f_1 \triangleq \{w_1, w_3\} = \{g(v_2), g(v_4)\} \\
e_3 & \triangleq \{v_2, v_3\} \rightarrow f_4 \triangleq \{w_1, w_4\} = \{g(v_2), g(v_3)\} \\
e_4 & \triangleq \{v_1, v_4\} \rightarrow f_3 \triangleq \{w_2, w_3\} = \{g(v_1), g(v_4)\} \\
e_5 & \triangleq \{v_3, v_4\} \rightarrow f_5 \triangleq \{w_3, w_4\} = \{g(v_3), g(v_4)\},
\end{align*}
\]

where we used $e \triangleq \{v, w\}$ to indicate that edge e has endpoints $\{v, w\}$.

- Since g and h are obviously one-to-one and onto, the pair g and h thus constitute an isomorphism of graphs G_1 and G_2, i.e. G_1 and G_2 are isomorphic, $G_1 \cong G_2$.

Graph Isomorphism
Example

The vertex bijection is given by $1 \rightarrow 1$, $2 \rightarrow 2$, $3 \rightarrow 4$, $4 \rightarrow 3$
Isomorphic invariant

- Isomorphic graphs are "same" in shapes, so properties on "shapes" will remain invariant for all graphs isomorphic to each other.

- A property P is called an **isomorphic invariant** if and only if, given any graphs isomorphic to each other, all the graphs will have property P whenever any one of the graphs does.

- There are many isomorphic invariants, e.g.

 (a) vertices of a given degree,
 (b) number of edges,
 (c) number of connected components,
 (d) has a circuit of given length,
 (e) number of loops at a vertex,
 (f) number of sets of parallel edges,
 (g) has a Hamiltonian circuit.

- Incidentally, an **isomorphic invariant** is sometimes also referred to as an **isomorphism invariant**.
Isomorphic invariant

Example

Graphs G_1 and G_2 below are not isomorphic to each other because vertex v of G_1 has degree 5 while no vertices of G_2 have degree 5.
Isomorphic invariant

Example

Back to example 1. We now explain briefly how we found the isomorphism functions g and h there.

First, since v_2, v_4 in G_1 and w_1 and w_3 in G_2 are the only vertices of degree 3, g must map v_2, v_4 to w_1, w_3 or w_3, w_1 respectively.

We thus choose $g(v_2) = w_1$ and $g(v_4) = w_3$.

Since $\{v_2, v_4\}$ are the endpoints of e_2, we must have $h(e_2) = f_1$ so that the endpoints $\{v_2, v_4\}$ of edge e_2 are preserved because f_1 has endpoints $\{w_1, w_3\} = \{g(v_2), g(v_4)\}$.

Next we need to map v_1, v_3 to w_2, w_4 or w_4, w_2 respectively.

If we choose $w_2 = g(v_1)$ we must have $w_4 = g(v_3)$.

Thus the edge e_1 joining v_1 and v_2 should be mapped to the edge f_2 joining $g(v_1) = w_2$ and $g(v_2) = w_1$, i.e. $f_2 = h(e_1)$, etc.
Matrices

- A **matrix** is a rectangular array of numbers (sometimes symbols or expressions) placed at the intersections of rows with columns.
- These numbers are called the *elements* of the matrix.
- A **m-by-n** matrix has m rows and n columns and $m \times n$ is called the *size* of the matrix.
- A squared matrix has the number of rows equal to the number of columns, for instance $n \times n$.
- Usually, the elements of a matrix are denoted by a variable with two subscripts, one for its row and one for its column, e.g.,
 - To represent the element at the third row and fifth column of a matrix $A = (a_{ij})_{m \times n}$, we use
 - $a(3, 5)$ or, equivalently,
 - a_{35}
Matrix Operations

- Matrices of the same size can be **added** \((A + B)\) or **subtracted** \((A - B)\) element by element.
- The **scalar multiplication** \(kA\) of a matrix \(A\) and a number \(k\) is given by multiplying every element of \(A\) by \(k\).
- **Multiplication** of two matrices is defined only if the number of columns of the left matrix is the same as the number of rows of the right matrix, that is, given \(A_{m\times n}\) and \(B_{n\times p}\), then \(A_{m\times n} \times B_{n\times p} = C_{m\times p}\).
Matrix Operations

- The elements of $C = (c_{ij})$ are given by dot product (sum of element by element products) of the corresponding row (ith) of A and the corresponding column (jth) of B, that is if

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$ and $B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nj} & \cdots & b_{np} \end{bmatrix}$

then matrix $C = A \times B$ has m rows and p columns

$$C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1j} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2j} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{i1} & c_{i2} & \cdots & c_{ij} & \cdots & c_{ip} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mj} & \cdots & c_{mp} \end{bmatrix}$$
Matrix Operations

where

\[c_{ij} = (a_{i1}, a_{i2}, \cdots, a_{in}) \cdot (b_{1j}, b_{2j}, \cdots, b_{nj}) = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} \]

or, using summation notation, this can be written much more concisely as

\[c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} \]

If \(A = (a_{ij}) \) and \(B = (b_{ij}) \) are two \(n \times n \) matrices, the product of \(A \) and \(B \), i.e. \(AB \), is always possible and it is another \(n \times n \) squared matrix

\[C = (c_{ij}) \] in which \(c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} \).
Matrix Operations

Example

Let 2 × 2 (i.e. 2 by 2) matrices A and B be given respectively by

$$A = \begin{bmatrix} 2 & -1 \\ 5 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 7 & 4 \\ 1 & -2 \end{bmatrix}.$$

Find $A + B$, AB and A^2.

Solution.

$$A + B = \begin{bmatrix} 2 + 7 & -1 + 4 \\ 5 + 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 6 & 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} 2 & -1 \\ 5 & 3 \end{bmatrix} \times \begin{bmatrix} 7 & 4 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 2 \times 7 + (-1) \times 1 & 2 \times 4 + (-1) \times (-2) \\ 5 \times 7 + 3 \times 1 & 5 \times 4 + 3 \times (-2) \end{bmatrix}$$

$$= \begin{bmatrix} 13 & 10 \\ 38 & 14 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 2 & -1 \\ 5 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & -1 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 2 \times 2 + (-1) \times 5 & 2 \times (-1) + (-1) \times 3 \\ 5 \times 2 + 3 \times 5 & 5 \times (-1) + 3 \times 3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & -5 \\ 25 & 4 \end{bmatrix}$$
Matrix Operations

Example

Let 3×3 matrices A and B be given by

$$A = \begin{bmatrix} 2 & -1 & 13 \\ 5 & 3 & -6 \\ 11 & 0 & 10 \end{bmatrix} \quad B = \begin{bmatrix} 7 & 4 & -8 \\ 1 & -2 & 0 \\ 9 & -4 & -3 \end{bmatrix}$$

Find the product matrix AB.

$$AB = \begin{bmatrix} 2 & -1 & 13 \\ 5 & 3 & -6 \\ 11 & 0 & 10 \end{bmatrix} \times \begin{bmatrix} 7 & 4 & -8 \\ 1 & -2 & 0 \\ 9 & -4 & -3 \end{bmatrix}$$
The Adjacency Matrix

- Given a directed (undirected) graph G of n vertices v_1, \cdots, v_n, we can represent the graph by an $n \times n$ matrix A over \mathbb{N}, i.e.

\[
A = \begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{bmatrix}, \quad a_{ij} \in \mathbb{N}
\]

in which the element a_{ij}

- is the number of arrows from v_i to v_j if G is a directed graph, or
- a_{ij} is the number of edges connecting v_i to v_j if G is an undirected graph.

- This matrix A is then said to be the adjacency matrix of the graph G.

- We note that a matrix is essentially just a table, and an adjacency matrix basically represents a table of nonnegative integers which correspond to the number of edges between different pair of vertices.
The adjacency matrix of digraph on the right is

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 2 \\
1 & 0 & 0
\end{bmatrix}
\]
The Adjacency Matrix

Example

The adjacency matrix of graph on the right is

\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 2 \\
1 & 2 & 0
\end{bmatrix}
\]
Theorem

Let G be a directed or undirected graph of n vertices v_1, v_2, \ldots, v_n, and A be the adjacency matrix of G. Then for any positive integer m, the (i, j)-th entry of A^m is equal to the number of walks of length m from v_i to v_j, where $i, j = 1, 2, \ldots n$.

Proof.

- Let S_m denote the statement that $(i, j)^{th}$ entry of A^m is equal to the number of walks of length m from v_i to v_j.
- Then for $m = 1$, S_1 is true because the adjacency matrix A is defined that way.
- For the induction purpose we now assume S_k is true with $k \geq 1$.
- Let $B = (b_{ij}) \overset{\text{def}}{=} A^k$, then $b_{sj} = \text{the number of walks of length } k \text{ from } v_s \text{ to } v_j$ due to the induction assumption. Hence
Number of Walks

Proof.

\[(i, j)\text{-th element of } A^{k+1} = (i, j)\text{-th element of } AB \]
\[= a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{is}b_{sj} + \ldots + a_{in}b_{nj} \]

the number of walks of length \(k + 1\) from \(v_i\) to \(v_j\)
that have \(v_s\) as their 2nd vertex

\[= \text{the number of walks of length } k + 1 \text{ from } v_i \text{ to } v_j \]
(taking any vertex as the 2nd vertex)

i.e. \(S_{k+1}\) is true.

Hence \(S_m\) is true for all \(m \geq 1\), and the proof of the theorem is thus completed. \(\square\)
Number of Walks

Example

Consider the digraph on the right, which has the adjacency matrix A below

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Since

$$A^2 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$

we see there are exactly 2 walks of length 2 that start at v_3 and end at v_1.
Number of Walks

Since

\[
A + A^2 + A^3 = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{bmatrix} + \begin{bmatrix}
2 & 1 & 0 \\
1 & 1 & 0 \\
2 & 1 & 0
\end{bmatrix} + \begin{bmatrix}
3 & 2 & 0 \\
2 & 1 & 0 \\
3 & 2 & 0
\end{bmatrix} = \begin{bmatrix}
6 & 4 & 0 \\
4 & 2 & 0 \\
6 & 4 & 0
\end{bmatrix}
\]

has only 0’s in the third column, we conclude that no vertex can reach \(v_3\) via a walk of nonzero length.